Skip To Content
ArcGIS Developers
Dashboard

Route service with asynchronous execution

The route service can be used to find the best way to get from one location to another or to visit several locations. The best route can be the quickest route for a given time of day considering the traffic conditions applicable during that time, or it can be the shortest route that minimizes the travel distance. The route service can also find the best route that visits each stop during permitted time windows you specify. If you have more than two stops to visit, the best route can be determined for the fixed order of locations you specify. Such a route is called a simple route. Alternatively, the route service can determine the best sequence in which to visit the locations (the traveling salesman problem). Such a route is called an optimized route.

Request URL

You can make a request to the asynchronous route service using the following form:

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/submitJob?parameters

The route service supports synchronous and asynchronous execution modes. Synchronous and asynchronous modes define how the application interacts with the service and gets the results.

  • Synchronous execution mode—The application must wait for the request to finish and get the results. This execution mode is well suited for requests that complete quickly (under 10 seconds).

  • Asynchronous execution mode—The client must periodically check whether the service has finished execution and, once completed, retrieve the results. While the service is executing, the application is available to do other things. This execution mode is well suited for requests that take a long time to complete because it allows users to continue to interact with the application while the results are generated.

While the service supports the same general functionality in both execution modes, the choice of the execution mode depends on the type of request your application has to make as well as the size of problem you need to solve using the service. In synchronous mode, the service limits the maximum number of stops to 150. In asynchronous mode, the maximum number of stops is 10,000 and the maximum number of stops per route is 150. So, if you are finding several routes and have fewer than 150 total stops, you can use the synchronous execution mode. However, if your application needs to support more than 150 total stops in a request, you need to use the asynchronous execution mode.

The request URL and the parameter names supported by the service when using synchronous execution are different and described in the Route service with synchronous execution page.

Caution:

The maximum time an application can use the route service when using the asynchronous execution mode is 1 hour (3,600 seconds). If your request does not complete within this time limit, it will time out and return a failure.

Dive-in:

The service works in all of the supported countries as listed on the data coverage page. One or more countries are grouped together to form an analysis region. The service can determine the best region to use based on the location of the inputs; otherwise, you can use a parameter to specify a region. The service does not support requests that span more than one region. Consequently, the service will only generate results for inputs that fall within one region.

Request parameters

The route request takes the required and optional parameters listed below. You always need to include values for the required parameters in your requests. The optional parameters have default values that are used when not specified in the request.

Request parameters and description

Parameter

Description

Required

stops

Specify two or more locations between which the route is to be found.

Syntax:

token

Provides the identity of a user that has the permissions to access the service.

f

Specify the response format.

Values: json | pjson

Optional

travel_mode

Choose the mode of transportation for the analysis.

Value: JSON object

measurement_units

Specify the units that should be used to report the total travel time or travel distance for the output routes.

Value: Minutes (default)

Values: See list

analysis_region

Specify the region in which to perform the analysis.

Values: See list

reorder_stops_to_find_optimal_routes

Specify whether the service should reorder stops to find the optimized route.

Values: true | false (default)

preserve_terminal_stops

When reorder_stops_to_find_optimal_routes is checked (or true), you have options to preserve the starting or ending stops.

Values: Preserve First (default)

Values: See list

return_to_start

Choose whether routes should start and end at the same location.

Values: true (default) | false

use_time_windows

Indicates if the routes should consider any time windows specified on the input stops.

Values: true | false (default)

time_zone_for_time_windows

Specify the time zone for the time window values on stops.

Values: Geographically Local (default)

Values: See list

time_of_day

Specify the time and date at which the routes should begin.

time_zone_for_time_of_day

Specify the time zone of the time_of_day parameter.

Values: See list

uturn_at_junctions

Restrict or allow the analysis to make U-turns at junctions.

Values: Allowed only at Intersections and Dead Ends (default)

Values: See list

point_barriers

Specify one or more points that act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets.

Syntax:

line_barriers

Specify one or more lines that prohibit travel anywhere the lines intersect the streets.

Syntax:

polygon_barriers

Specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.

Syntax:

use_hierarchy

Specify whether hierarchy should be used when finding the shortest paths.

Values: true (default) | false

restrictions

Specify which restrictions should be honored by the service.

Values: See list

attribute_parameter_values

Specify additional values required by an attribute or restriction, such as whether the restriction prohibits, avoids, or prefers travel on restricted roads.

Values: See list

Syntax

route_shape

Specify the type of route features that are output by the service.

Values: True Shape (default)

Values: See list

route_line_simplification_tolerance

Specify by how much you want to simplify the route geometry returned by the service.

Values: 10 meters (default)

Syntax

populate_route_edges

Specify whether the tool should generate edges for each route.

Values: true | false (default)

populate_directions

Specify whether the service should generate driving directions for each route.

Values: true | false (default)

directions_language

Specify the language that should be used when generating driving directions.

Applies only when the populate_directions parameter is set to true.

Values: en(default)

Values: See list

directions_distance_units

Units for displaying travel distance in the driving directions.

Applies only when the populate_directions parameter is set to true.

Values: Miles (default)

Values: See list

directions_style_name

Specify the name of the formatting style for the directions.

Applies only when the populate_directions parameter is set to true.

Values: NA Desktop (default)

Values: See list

impedance

Specify the impedance.

Values: Truck Time (default)

Values: See list

save_route_data

Specify whether the service should create a ZIP file that contains a file geodatabase holding the input and output of the analysis in a format that can be used to share route layers with your portal.

Values: true | false (default)

save_output_network_analysis_layer

Specify if the service should save the analysis settings as a network analysis layer file.

Values: true | false (default)

overrides

Specify additional settings that can influence the behavior of the solver.

Syntax

time_impedance

Specify the time-based impedance.

distance_impedance

Specify the distance-based impedance.

output_format

Specify the format in which the output features are created.

Values: Feature Set (default)

Values: See list

env:outSR

Specify the spatial reference of the geometries.

ignore_invalid_locations

Specify whether invalid input locations will be ignored.

The default value is true.

Values: true | false

Required parameters

stops

Use this parameter to specify two or more locations between which the route is to be found.

Caution:

The service imposes a limit of 10,000 points that can be passed as stops. If this value is exceeded, the response returns an error message.

You can specify stop geometries as attributes using a comprehensive JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either the features or the url property must be specified.
  • features—Specifies an array of features. This property is optional. However, either the features or the url property must be specified.

Each feature in the features array represents a stop and contains the following properties:

  • geometry—Specifies the stop geometry as a point containing x and y properties along with a spatialReference property. The spatialReference property is not required if the coordinate values are in the default spatial reference, WGS84. If the coordinate values are in a different spatial reference, you need to specify the well-known ID (WKID) for the spatial reference. See Geographic coordinate systems and Projected coordinate systems to look up WKID values.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for stops

When specifying the stops using JSON structure, you can specify additional properties for stops, such as their names, using attributes. The stops parameter can be specified with the following attributes:

Name

The name of the stop. The name is used in the driving directions. If the name is not specified, a unique name prefixed with Location is automatically generated in the output stops, routes, and directions.

RouteName

The name of the route to which the stop is assigned. Assigning the same route name to different stops causes those stops to be grouped together and visited by the same route. You can generate many routes in a single solve by assigning unique route names to different groups of stops.

You can group up to 150 stops into one route.

Sequence

The output routes will visit the stops in the order you specify with this attribute. In a group of stops that have the same RouteName value, the sequence number should be greater than 0 but not greater than the total number of stops. Also, the sequence number should not be duplicated.

If reorder stops to find optimal routes is (True), all but possibly the first and last sequence values for each route name are ignored so the tool can find the sequence that minimizes overall travel for each route. (The settings for preserve_terminal_stops and return to start determine whether the first or last sequence values for each route are ignored.)

AdditionalTime

The amount of time spent at the stop, which is added to the total time of the route. The default value is 0.

The units for this attribute value are specified by the measurement_units parameter. The attribute value is included in the analysis only when the measurement units are time based.

You can account for the extra time it takes at the stop to complete a task, such as to repair an appliance, deliver a package, or inspect the premises.

AdditionalDistance

The extra distance traveled at the stops, which is added to the total distance of the route. The default value is 0.

The units for this attribute value are specified by the measurement_units parameter. The attribute value is included in the analysis only when the measurement units are distance based.

Generally, the location of a stop, such as a home, isn't exactly on the street; it is set back somewhat from the road. This attribute value can be used to model the distance between the actual stop location and its location on the street if it is important to include that distance in the total travel distance.

AdditionalCost

The extra cost spent at the stop, which is added to the total cost of the route. The default value is 0.

This attribute value should be used when the travel mode for the analysis uses an impedance attribute that is neither time based nor distance based. The units for the attribute values are interpreted to be in unknown units.

TimeWindowStart

The earliest time the stop can be visited. By specifying a start and end time for a stop's time window, you are defining when a route should visit the stop. When the travel mode for the analysis uses an impedance attribute that is time based, by specifying time-window values the analysis will find a solution that minimizes overall travel and reaches the stop within the prescribed time window.

Make sure you specify the value as a date and time value, such as 8/12/2015 12:15 PM.

When solving a problem that spans multiple time zones, time-window values refer to the time zone in which the stop is located.

This field can contain a null value; a null value indicates that a route can arrive at any time before the time indicated in the TimeWindowEnd attribute. If a null value is also present in TimeWindowEnd, a route can visit the stop at any time.

TimeWindowEnd

The latest time the stop can be visited. By specifying a start and end time for a stop's time window, you are defining when a route will visit the stop. When the travel mode for the analysis uses an impedance attribute that is time based, specifying time-window values will cause the analysis to find a solution that minimizes overall travel and reaches the stop within the prescribed time window.

Make sure you specify the value as a date and time value, such as 8/12/2015 12:15 PM.

When solving a problem that spans multiple time zones, time-window values refer to the time zone in which the stop is located.

This field can contain a null value; a null value indicates that a route can arrive at any time after the time indicated in the TimeWindowStart attribute. If a null value is also present in TimeWindowStart, a route can visit the stop at any time.

CurbApproach

Specifies the direction a vehicle may arrive at and depart from the stop. One of the integers listed in the Coded value column in the following table must be specified as a value of this attribute. The values in the Setting column are the descriptive names for CurbApproach attribute values that you might have come across when using ArcGIS Network Analyst extension extension software.

SettingCoded valueDescription

Either side of vehicle

0

The vehicle can approach and depart the stop in either direction, so a U-turn is allowed at the stop. This is the default value. This setting can be chosen if it is possible and desirable for your vehicle to turn around at the stop. This decision may depend on the width of the road and the amount of traffic or whether the stop has a parking lot where vehicles can pull in and turn around.

Either side of vehicle
All arrival and departure combinations are allowed with the Either side of vehicle curb approach.

Right side of vehicle

1

When the vehicle approaches and departs the stop, the stop must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles like buses that must arrive with the bus stop on the right side.

Right side of vehicle
The allowed arrival and departure combination for the Right side of vehicle curb approach

Left side of vehicle

2

When the vehicle approaches and departs the stop, the stop must be on the left side of the vehicle. A U-turn is prohibited. This is typically used for vehicles like buses that must arrive with the bus stop on the left hand side.

Left side of vehicle
The allowed arrival and departure combination for the Left side of vehicle curb approach

No U-Turn

3

When the vehicle approaches the stop, the stop can be on either side of the vehicle; however, when it departs, the vehicle must continue in the same direction it arrived in. A U-turn is prohibited.

No U-turns
The allowed arrival and departure combinations for the No U-Turn curb approach

The CurbApproach attribute is designed to work with both types of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an incident on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach an incident from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at an incident and not have a lane of traffic between the vehicle and the incident, choose 1 (Right side of vehicle) in the United States and 2 (Left side of vehicle) in the United Kingdom.

Right side of vehicle with right-hand traffic
With right-hand traffic, the curb approach that leaves the vehicle closest to the stop is Right side of vehicle.
Left side of vehicle with left-hand traffic
With left-hand traffic, the curb approach that leaves the vehicle closest to the stop is Left side of vehicle.

Bearing

The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the BearingTol field.

Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.

Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass, for example. Bearing also helps the tool determine on which side of the street the point is.

BearingTol

The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the Bearing field. If the Bearing field value is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.

The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when Network Analyst attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.

NavLatency

This field is only used in the solve process if the Bearing and BearingTol fields also have values; however, entering a NavLatency field value is optional, even when values are present in Bearing and BearingTol. NavLatency indicates how much cost is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.

The units of NavLatency are the same as the units of the impedance attribute.

Syntax for specifying stops using JSON structure for features
{
    "features": [
        {
            "geometry": {
                "x": <x>,
                "y": <y>,
                "spatialReference": {
                    "wkid": <wkid>,
                    "latestWkid": <wkid>,
                    
                }
            },
            "attributes": {
                "<field1>": <value11>,
                "<field2>": <value12>
            }
        },
        {
            "geometry": {
                "x": <x>,
                "y": <y>,
                "spatialReference": {
                    "wkid": <wkid>,
                    "latestWkid": <wkid>,
                    
                }
            },
            "attributes": {
                "<field1>": <value21>,
                "<field2>": <value22>
            }
        }
    ], 
}

Example 1: Specifying stop geometries and attributes using JSON structure

The geometries for stops are in the default spatial reference, WGS84, and therefore the spatialReference property is not required within the geometry property. The example also shows how to specify the Name attribute for each stop and group four stops into two routes, Route A and Route B, using the RouteName attribute.

{
    "features": [
        {
            "geometry": {
                "x": -122.4079,
                "y": 37.78356
            },
            "attributes": {
                "Name": "From",
                "RouteName": "Route A"
            }
        },
        {
            "geometry": {
                "x": -122.404,
                "y": 37.782
            },
            "attributes": {
                "Name": "To",
                "RouteName": "Route A"
            }
        },
        {
            "geometry": {
                "x": -122.4095,
                "y": 37.78379
            },
            "attributes": {
                "Name": "From",
                "RouteName": "Route B"
            }
        },
        {
            "geometry": {
                "x": -122.480,
                "y": 37.734
            },
            "attributes": {
                "Name": "To",
                "RouteName": "Route B"
            }
        }
    ]
}

Example 2: Specifying stop geometries in Web Mercator spatial reference using JSON structure

The stops geometries are in the Web Mercator spatial reference and not in the default WGS84 spatial reference. Therefore, the spatialReference property is required within the geometry property.

{
    "features": [
        {
            "geometry": {
                "x": -13635398.9398,
                "y": 4544699.034400001,
                "spatialReference": {
                    "wkid": 102100
                }
            },
            "attributes": {
                "Name": "Home",
            }
        },
        {
            "geometry": {
                "x": -13632733.3441,
                "y": 4547651.028300002,
                "spatialReference": {
                    "wkid": 102100
                }
            },
            "attributes": {
                "Name": "Office",
            }
        }
    ]
}

Syntax for specifying stops using URL returning a JSON response
{
    "url": "<url>"
}

Example 3: Specifying stops using URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
    "url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/1/query?where=1%3D1&outFields=Name,RouteName&f=json"
}

token

Use this parameter to specify a token that provides the identity of a user that has the permissions to access the service. Accessing services provided by Esri provides more information on how such an access token can be obtained.

Example (replace <yourToken> with a valid token):
token=<yourToken>

f

Use this parameter to specify the response format. Choose either json or pjson, for example, f=json. The pjson value is used for printing the JSON response in a pretty format.

Optional parameters

travel_mode

Choose the mode of transportation for the analysis.

Travel modes are managed in ArcGIS Online and can be configured by the administrator of your organization to better reflect your organization's workflows. You need to specify the JSON object containing the settings for a travel mode supported by your organization. To get a list of supported travel modes, execute the GetTravelModes tool from the Utilities service.

The value for the travel_mode parameter should be a JSON object representing travel mode settings. When you use the GetTravelModes tool from the Utilities service, you get a string representing the travel mode JSON. You need to convert this string to a valid JSON object using your API and then pass the JSON object as the value for the travel_mode parameter.

For example, below is a string representing the Walking Time travel mode as returned by the GetTravelModes tool.

"{\"attributeParameterValues\": [{\"parameterName\": \"Restriction Usage\", \"attributeName\": \"Walking\", \"value\": \"PROHIBITED\"}, {\"parameterName\": \"Restriction Usage\", \"attributeName\": \"Preferred for Pedestrians\", \"value\": \"PREFER_LOW\"}, {\"parameterName\": \"Walking Speed (km/h)\", \"attributeName\": \"WalkTime\", \"value\": 5}], \"description\": \"Follows paths and roads that allow pedestrian traffic and finds solutions that optimize travel time. The walking speed is set to 5 kilometers per hour.\", \"impedanceAttributeName\": \"WalkTime\", \"simplificationToleranceUnits\": \"esriMeters\", \"uturnAtJunctions\": \"esriNFSBAllowBacktrack\", \"restrictionAttributeNames\": [\"Preferred for Pedestrians\", \"Walking\"], \"useHierarchy\": false, \"simplificationTolerance\": 2, \"timeAttributeName\": \"WalkTime\", \"distanceAttributeName\": \"Miles\", \"type\": \"WALK\", \"id\": \"caFAgoThrvUpkFBW\", \"name\": \"Walking Time\"}"

The above value should be converted to a valid JSON object and passed as the value for the travel_mode parameter

travel_mode={"attributeParameterValues":[{"parameterName":"Restriction Usage","attributeName":"Walking","value":"PROHIBITED"},{"parameterName":"Restriction Usage","attributeName":"Preferred for Pedestrians","value":"PREFER_LOW"},{"parameterName":"Walking Speed (km/h)","attributeName":"WalkTime","value":5}],"description":"Follows paths and roads that allow pedestrian traffic and finds solutions that optimize travel time. The walking speed is set to 5 kilometers per hour.","impedanceAttributeName":"WalkTime","simplificationToleranceUnits":"esriMeters","uturnAtJunctions":"esriNFSBAllowBacktrack","restrictionAttributeNames":["Preferred for Pedestrians","Walking"],"useHierarchy":false,"simplificationTolerance":2,"timeAttributeName":"WalkTime","distanceAttributeName":"Miles","type":"WALK","id":"caFAgoThrvUpkFBW","name":"Walking Time"}

The default value,Custom, allows you to configure your own travel mode. When you pass in Custom, you can set values for the following parameters impedance, time_impedance, distance_impedance, uturn_at_junctions, use_hierarchy, route_line_simplification_tolerance, restrictions, and attribute_parameter_values. You may want to choose Custom and set the custom travel mode parameters listed above, for example, to model a pedestrian with a fast walking speed or a truck with a given height, weight, and cargo of certain hazardous materials. You may choose to do this to try out different settings to get desired analysis results. Once you have identified the analysis settings, you should work with your organization's administrator and save these settings as part of new or existing travel mode so that everyone in your organization can rerun the analysis with the same settings.

The default values of the custom travel mode parameters model traveling by car. If you specify the travel mode as Custom or do not provide a value for the travel_mode parameter, the analysis will be similar to using the default Driving Time travel mode.

Caution:

When the travel_mode parameter is not set to Custom, this means you are choosing a travel mode configured by your organization, and the service automatically overrides the values of other parameters with values that model the chosen travel mode. The following parameters are overridden:impedance, time_impedance, distance_impedance, uturn_at_junctions, use_hierarchy, route_line_simplification_tolerance, restrictions, and attribute_parameter_values.

measurement_units

Use this parameter to specify the units that should be used to report the total travel time or travel distance for the output routes. The service determines the shortest path based on travel time or travel distance along the streets depending on whether the units you specify for this parameter are time or distance based. The parameter can be specified using the following values:

  • Meters
  • Kilometers
  • Feet
  • Yards
  • Miles
  • NauticalMiles
  • Seconds
  • Minutes
  • Hours
  • Days

The default value is Minutes.

analysis_region

Specify the region in which to perform the analysis. If a value is not specified for this parameter, the tool will automatically calculate the region name based on the location of the input points. Setting the name of the region is recommended to speed up the tool execution.

To specify a region, use one of the following values:

  • Europe
  • Japan
  • Korea
  • MiddleEastAndAfrica
  • NorthAmerica
  • SouthAmerica
  • SouthAsia
  • Thailand

Legacy:

The following region names are no longer supported and will be removed in future releases. If you specify one of the deprecated region names, the tool automatically assigns a supported region name for your region.

  • Greece redirects to Europe
  • India redirects to SouthAsia
  • Oceania redirects to SouthAsia
  • SouthEastAsia redirects to SouthAsia
  • Taiwan redirects to SouthAsia

The data coverage page lists the countries that are grouped into each of these regions.

reorder_stops_to_find_optimal_routes

Use this parameter to specify whether the service should reorder stops to find the optimized route.

  • false—The service returns a route that visits stops in the order you define. This is the default value.

  • true—The service finds the best order to visit the stops. The service will account for a variety of variables so that the total travel distance or travel time for the route is minimized. You can elect to preserve the first and last stops while allowing the service to reorder intermediary stops by setting the preserve_terminal_stops parameter.

Caution:

A true parameter value causes the service to switch from solving a shortest-path problem to a traveling salesperson problem (TSP). Solving a TSP is a computer-intensive operation and incurs additional service credits per route.

preserve_terminal_stops

When reorder_stops_to_find_optimal_routes is checked (or true), you have options to preserve the starting or ending stops and let the tool reorder the rest. The first and last stops are determined by their sequence attribute values or, if the sequence values are null, by the order they are listed.

  • Preserve First—The service won't reorder the first stop. Choose this option if you are starting from a known location, such as your home, headquarters, or current location. This is the default value.

  • Preserve Last—The service won't reorder the last stop. The output routes may begin at any stop but must end at the predetermined last stop.

  • Preserve First and Last—The tool won't reorder the first and last stops.

  • Preserve None—The service may reorder any stop, including the first and last stops. The route may start or end at any of the stop features.

This parameter is ignored when reorder_stops_to_find_optimal_routes is false.

return_to_start

Choose whether routes should start and end at the same location. With this option you can avoid duplicating the first stop feature and sequencing the duplicate stop at the end of the stop list.

  • true—The route should start and end at the first stop feature. This is the default value.

    When reorder_stops_to_find_optimal_routes and return_to_start are both true, preserve_terminal_stops must be set to Preserve First (the default value).

  • false—The route won't start and end at the first stop feature.

use_time_windows

Set this parameter to true if the routes should consider any time windows specified on the input stops. Otherwise, set it to false, which is the default value.

You can add time windows to input stops by entering time values in the TimeWindowStart and TimeWindowEnd attributes.

The tool will take slightly longer to run when use_time_windows is set to true, even when none of the input stops have time windows, so it is recommended to set it to false if possible.

time_zone_for_time_windows

Use this parameter to specify the time zone for the time window values on stops. The time windows are specified as part of TimeWindowStart and TimeWindowEnd fields on stops. This parameter is applicable only when the use_time_windows parameter is set to true.

The parameter can be specified using one of the following values:

  • Geographically Local—The time window values associated with the stops are in the time zone in which the stops are located. For example, if the stop is located in an area that follows eastern standard time and has time window values of 8:00 a.m. and 10:00 a.m., the time window values will be treated as 8:00 a.m. and 10:00 a.m. in eastern standard time.
  • UTC—The time window values associated with the stops are in UTC. For example, if the stop is located in an area that follows eastern standard time and has time window values of 8:00 a.m. and 10:00 a.m., the time window values will be treated as 3:00 a.m. and 5:00 a.m. eastern standard time. Specifying the time window values in UTC is useful if you don't know the time zones of the stops but know the absolute time for the time windows (for example, the time window starts an hour from now). The UTC option is applicable only when your network dataset defines a time zone attribute. If your network dataset does not define a time zone attribute, all time window values are always treated as geographically local.

The default value for this parameter is Geographically Local.

time_of_day

Use this parameter to specify the time and date at which the routes should begin. If you specify the current date and time as the value for this parameter, the tool will use live traffic conditions to find the best routes and the total travel time will be based on traffic conditions where available. (See the data coverage page for details on which areas support traffic.)

The time is specified as Unix time (milliseconds since midnight, January 1, 1970).

The time_zone_for_time_of_day parameter specifies whether time_of_day is in UTC or the time zone in which the stop is located.

Specifying a time of day results in more accurate routes and estimations of travel times because the travel times account for the traffic conditions that are applicable for that date and time.

If a time of day is not passed in, the service uses static road speeds based on average historical speeds or posted speed limits. It uses posted speeds in areas where historical traffic information isn't available.

Note:

Traffic is supported only with the driving time impedance or travel mode. It's not supported with trucking.

The service supports two kinds of traffic: typical and live. Typical traffic references travel speeds that are made up of historical averages for each five-minute interval spanning a week. Live traffic retrieves speeds from a traffic feed that processes phone probe records, sensors, and other data sources to record actual travel speeds and predict speeds for the near future.

The Data Coverage page shows the countries for which Esri currently provides traffic data.

Typical traffic:

To ensure the service uses typical traffic in locations where it is available, choose a time and day of the week, and then convert the day of the week to one of the following dates from 1990:

  • Monday—1/1/1990
  • Tuesday—1/2/1990
  • Wednesday—1/3/1990
  • Thursday—1/4/1990
  • Friday—1/5/1990
  • Saturday—1/6/1990
  • Sunday—1/7/1990

Set the time and date as Unix time in milliseconds.

For example, to solve for 1:03 p.m. on Thursdays, set the time and date to 1:03 p.m., 4 January 1990, and convert to milliseconds (631458180000).

Note:

Although the dates representing days of the week are from 1990, typical traffic is calculated from recent traffic trends—usually over the last several months.

Live traffic:

To use live traffic when and where it is available, choose a time and date and convert to Unix time.

Esri saves live traffic data for 4 hours and references predictive data extending 4 hours into the future. If the time and date you specify for this parameter is outside of the 8-hour time window, or the travel time in the analysis continues past the predictive data window, the task falls back to typical traffic speeds.

Examples:

  • "time_Of_Day": 631458180000 // 13:03, 4 January 1990. Typical traffic on Thursdays at 1:03 p.m.
  • "time_Of_Day": 631731600000 // 17:00, 7 January 1990. Typical traffic on Sundays at 5:00 p.m.
  • "time_Of_Day": 1413964800000 // 8:00, 22 October 2014. If the current time is between 8:00 p.m., 21 Oct. 2014, and 8:00 p.m., 22 Oct. 2014, live traffic speeds are referenced in the analysis; otherwise, typical traffic speeds are referenced.
  • "time_Of_Day": 1426674000000 // 10:20, 18 March 2015. If the current time is between 10:20 p.m., 17 Mar. 2015, and 10:20 p.m., 18 Mar. 2015, live traffic speeds are referenced in the analysis; otherwise, typical traffic speeds are referenced.

time_zone_for_time_of_day

Use this parameter to specify the time zone of the time_of_day parameter.

  • Geographically Local—The time_of_day parameter refers to the time zone in which the first stop of a route is located.

    If you are generating multiple routes that start in different time zones, the start time would be the same in local time, but staggered in UTC. For example, a time_of_day value of 10:00 a.m. would mean a start time of 10:00 a.m. eastern time (3:00 p.m. UTC) for routes beginning in the eastern time zone and 10:00 a.m. central time (4:00 p.m. UTC) for routes beginning in the central time zone.

    The arrive and depart times and dates recorded in the output Stops feature class will refer to the local time zone of the first stop for each route.

  • UTC—The time_of_day parameter refers to UTC. Choose this option if you want to generate a route for a specific time, such as now, but aren't certain which time zone the first stop will be located in.

    If you are generating multiple routes that start in different time zones, the start time in UTC is absolute and thus would reflect different starting times in different time zones. For example, a time_of_day value of 10:00 a.m. would mean a start time of 5:00 a.m. eastern time (UTC-5:00) for routes beginning in the eastern time zone and 4:00 a.m. central time (UTC-6:00) for routes beginning in the central time zone. Both routes would start at 10:00 a.m. UTC.

    The arrive and depart times and dates recorded in the output Stops feature class will refer to UTC.

uturn_at_junctions

Use this parameter to restrict or allow the analysis to make U-turns at junctions.

Caution:

The value of this parameter, regardless of whether you rely on the default or explicitly set a value, is overridden when travel_mode is set to any other value than Custom. The default value for travel_mode is Driving, so unless you set travel_mode to a different value, this parameter value will be overridden.

In order to understand the available parameter values, consider for a moment that a junction is a point where only two streets intersect each other. If three or more streets intersect at a point, it is called as an intersection. A cul-de-sac is a dead-end. The parameter can have the following values:

Parameter ValueDescription

Allowed

U-turns are permitted everywhere. Allowing U-turns implies that the vehicle can turn around at a junction or intersection and double back on the same street.

U-turns are allowed
U-turns are permitted at junctions with any number of adjacent streets.

Allowed only at Intersections and Dead Ends

U-turns are prohibited at junctions where exactly two adjacent streets meet.

U-turns allowed only at intersections and dead-ends
U-turns are permitted only at intersections or dead ends.

Allowed only at Dead Ends

U-turns are prohibited at all junctions and interesections and are permitted only at dead ends.

U-turns allowed only at dead-ends
U-turns are permitted only at dead ends.

Not Allowed

U-turns are prohibited at all junctions, intersections, and dead-ends. Note that even when this parameter value is chosen, a route can still make U-turns at stops. If you wish to prohibit U-turns at a stop, you can set its CurbApproach property to the appropriate value (3).

The default value for this parameter is Allowed only at Intersections and Dead Ends.

point_barriers

Use this parameter to specify one or more points that act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets. For example, a point barrier can be used to represent a fallen tree along a street or time delay spent at a railroad crossing.

Caution:

The service imposes a maximum limit of 250 point barriers. If this value is exceeded, the response returns an error message.

The point_barriers parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the geometries of point barriers. This property is not required if the coordinate values are in the default spatial reference, WGS84. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See Geographic coordinate systems and Projected coordinate systems to look up WKID values.
  • features—Specifies an array of features. This property is optional. However, either the features or the url property must be specified.

Each feature in the features array represents a point barrier and contains the following properties:

  • geometry—Specifies the barrier's geometry as a point containing x and y properties.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for point_barriers

When specifying point barriers, you can set properties for each, such as its name or barrier type, using the following attributes:

Name

The name of the barrier.

BarrierType

Specifies whether the point barrier restricts travel completely or adds time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):

  • 0 (Restriction)—Prohibits travel through the barrier. The barrier is referred to as a restriction point barrier since it acts as a restriction.
    Two maps demonstrate how a restriction point barrier affects finding the best route.
    The map on the left shows the shortest path between two stops without any restriction point barriers. The map on the right has a road that is blocked by a fallen tree, so the shortest path between the same points is longer.
  • 2 (Added Cost)—Traveling through the barrier increases the travel time or distance by the amount specified in the Additional_Time, Additional_Distance, or Additional_Cost field. This barrier type is referred to as an added-cost point barrier.
    Two maps demonstrate how added cost barriers affect finding the best route.
    The map on the left shows the shortest path between two stops without any added cost point barrier. For the map on the right, the travel time from stop one to stop two would be the same whether going around the north end of the block or the south end; however, since crossing railroad tracks incurs a time penalty (modeled with added cost point barriers), the route with only one railroad crossing is chosen. The cost of crossing the barrier is added to the accumulated travel time of the resulting route.

Additional_Time

The added travel time when the barrier is traversed. This field is applicable only for added-cost barriers and when the Measurement Units parameter value is time based.

This field value must be greater than or equal to zero, and its units must be the same as those specified in the Measurement Units parameter.

Additional_Distance

The added distance when the barrier is traversed. This field is applicable only for added-cost barriers and when the Measurement Units parameter value is distance based.

The field value must be greater than or equal to zero, and its units must be the same as those specified in the Measurement Units parameter.

Additional_Cost

The added cost when the barrier is traversed. This field is applicable only for added-cost barriers when the Measurement Units parameter value is neither time based nor distance based.

FullEdge

Specifies how the restriction point barriers are applied to the edge elements during the analysis. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

  • 0 (False)—Permits travel on the edge up to the barrier but not through it. This is the default value.
  • 1 (True)—Restricts travel anywhere on the associated edge.

CurbApproach

Specifies the direction of traffic that is affected by the barrier. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

  • 0 (Either side of vehicle)—The barrier affects travel over the edge in both directions.
  • 1 (Right side of vehicle)—Vehicles are only affected if the barrier is on their right side during the approach. Vehicles that traverse the same edge but approach the barrier on their left side are not affected by the barrier.
  • 2 (Left side of vehicle)—Vehicles are only affected if the barrier is on their left side during the approach. Vehicles that traverse the same edge but approach the barrier on their right side are not affected by the barrier.

Because junctions are points and don't have a side, barriers on junctions affect all vehicles regardless of the curb approach.

The CurbApproach attribute works with both types of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider a facility on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach a facility from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, to arrive at a facility and not have a lane of traffic between the vehicle and the facility, choose 1 (Right side of vehicle) in the United States and 2 (Left side of vehicle) in the United Kingdom.

Bearing

The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the BearingTol field.

Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.

Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass, for example. Bearing also helps the tool determine on which side of the street the point is.

BearingTol

The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the Bearing field. If the Bearing field value is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.

The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when Network Analyst attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.

NavLatency

This field is only used in the solve process if the Bearing and BearingTol fields also have values; however, entering a NavLatency field value is optional, even when values are present in Bearing and BearingTol. NavLatency indicates how much cost is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.

The units of NavLatency are the same as the units of the impedance attribute.

Syntax for specifying point_barriers using a JSON structure for features
{
    "spatialReference": {
        "wkid": <wkid>,
        "latestWkid": <wkid>, 
    },
    "features": [
        {
            "geometry": {
                "x": <x1>,
                "y": <y1>,
            },
            "attributes": {
                "<field1>": <value11>,
                "<field2>": <value12>
            }
        },
        {
            "geometry": {
                "x": <x2>,
                "y": <y2>,
            },
            "attributes": {
                "<field1>": <value21>,
                "<field2>": <value22>
            }
        }
    ], 
}

Example 1: Specifying an added cost point barrier in the default spatial reference, WGS84, using JSON structure

This example shows how to use an added cost point barrier to model a 5-minute delay at a railroad crossing. The BarrierType attribute is used to specify the point barrier is of type added cost and the Additional_Time attribute is used to specify the added delay in minutes. The barrier geometries are in the default spatial reference, WGS84. Therefore, the spatialReference property is not specified.

{
    "features": [
        {
            "geometry": {
                "x": 37.541479,
                "y": -122.053461
            },
            "attributes": {
                "Name": "Haley St railroad crossing",
                "BarrrierType": 2,
                "Additional_Time": 5
            }
        }
    ]
}

Example 2: Specifying restriction point barriers in the Web Mercator spatial reference using a JSON structure

This example shows how to use a restriction point barrier to model a road that is blocked by a fallen tree. The barrier's geometry is in the Web Mercator spatial reference and not in the default WGS84 spatial reference. Therefore, the spatialReference property is required.

{
    "spatialReference": {
        "wkid": 102100
    },
    "features": [
        {
            "geometry": {
                "y": -13635398.9398,
                "x": 4544699.034400001
            },
            "attributes": {
                "Name": "Fallen tree at 123 Main St", 
                "BarrierType": 0
            }
        }
    ]
}

Syntax for specifying point_barriers using a URL returning a JSON response
{
    "url": "<url>"
}

Example 3: Specifying point barriers using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
    "url": "https://sampleserver6.arcgisonline.com/arcgis/rest/services/NetworkAnalysis/SanDiego/MapServer/21/query?where=1%3D1&outFields=Name&f=json"
}

line_barriers

Use this parameter to specify one or more lines that prohibit travel anywhere the lines intersect the streets. For example, a parade or protest that blocks traffic across several street segments can be modeled with a line barrier. A line barrier can also quickly block several roads from being traversed, thereby channeling possible routes away from undesirable parts of the street network.

Two maps demonstrate a line barrier
The map on the left displays the shortest path between two stops. The map on the right shows the shortest path when several streets are blocked by a line barrier.

Caution:

The service imposes a limit on the number of streets you can restrict using the line_barriers parameter. While there is no limit on the number of lines you can specify as line barriers, the combined number of streets intersected by all the lines cannot exceed 500. If this value is exceeded, the response returns an error message.

The line_barriers parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the geometries of the barriers. This property is not required if the coordinate values are in the default spatial reference, WGS84. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See Geographic coordinate systems and Projected coordinate systems to look up WKID values.
  • features—Specifies an array of features. This property is optional. However, either the features or the url property must be specified.

Each feature in the features array represents a line barrier and contains the following properties:

  • geometry—Specifies the barrier's geometry. The structure is based on an ArcGIS REST polyline object. A polyline contains an array of paths. Each path is represented as an array of points, and each point in the path is represented as an array of numbers containing x- and y-coordinate values at index 0 and 1, respectively.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for line_barriers

When specifying the line barriers, you can set name and barrier type properties for each using the following attributes:

Name

The name of the barrier.

Syntax for specifying line barriers using a JSON structure for features
{
    "spatialReference": {
        "wkid": <wkid>,
        "latestWkid": <wkid>, 
    },
    "features": [
        {
            "geometry": {
                "paths": [
                    [
                        [
                            <x11>,
                            <y11>
                        ],
                        [
                            <x12>,
                            <y12>
                        ]
                    ],
                    [
                        [
                            <x21>,
                            <y21>
                        ],
                        [
                            <x22>,
                            <y22>
                        ]
                    ]
                ]
            },
            "attributes": {
                "<field1>": <value11>,
                "<field2>": <value12>
            }
        },
		{
            "geometry": {
                "paths": [
                    [
                        [
                            <x11>,
                            <y11>
                        ],
                        [
                            <x12>,
                            <y12>
                        ]
                    ],
                    [
                        [
                            <x21>,
                            <y21>
                        ],
                        [
                            <x22>,
                            <y22>
                        ]
                    ]
                ]
            },
            "attributes": {
                "<field1>": <value21>,
                "<field2>": <value22>
            }
        }
    ], 
}

Example 1: Specifying line barriers using a JSON structure in the Web Mercator spatial reference

The example shows how to add two lines as line barriers to restrict travel on the streets intersected by the lines. Barrier 1 is a single-part line feature made up of two points. Barrier 2 is a two-part line feature whose first part is made up of three points and whose second part is made up of two points. The barrier geometries are in the Web Mercator spatial reference and not in the default WGS84 spatial reference. Therefore, the spatialReference property is required.

{
    "spatialReference": {
        "wkid": 102100
    },
    "features": [
        {
            "geometry": {
                "paths": [
                    [
                        [
                            -10804823.397,
                            3873688.372
                        ],
                        [
                            -10804811.152,
                            3873025.945
                        ]
                    ]
                ]
            },
            "attributes": {
                "Name": "Barrier 1"
            }
        },
        {
            "geometry": {
                "paths": [
                    [
                        [
                            -10804823.397,
                            3873688.372
                        ],
                        [
                            -10804807.813,
                            3873290.911
                        ],
                        [
                            -10804811.152,
                            3873025.945
                        ]
                    ],
                    [
                        [
                            -10805032.678,
                            3863358.76
                        ],
                        [
                            -10805001.508,
                            3862829.281
                        ]
                    ]
                ]
            },
            "attributes": {
                "Name": "Barrier 2"
            }
        }
    ]
}

Syntax for specifying line barriers using a URL returning a JSON response
{
    "url": "<url>"
}

Example 2: Specifying line barriers using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
    "url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/6/query?where=1%3D1&returnGeometry=true&f=json"
}

polygon_barriers

Use this parameter to specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.

Caution:

The service imposes a limit on the number of streets you can restrict using the polygon_barriers parameter. While there is no limit on the number of polygons you can specify as the polygon barriers, the combined number of streets intersected by all the polygons cannot exceed 2,000. If this value is exceeded, the response returns an error message.

The polygon_barriers parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the geometries of barriers. This property is not required if the coordinate values are in the default spatial reference, WGS84. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See Geographic coordinate systems and Projected coordinate systems to look up WKID values.
  • features—Specifies an array of features. This property is optional. However, either the features or the url property must be specified.

Each feature in the features array represents a polygon barrier and contains the following properties:

  • geometry—Specifies the barrier's geometry. The structure is based on an ArcGIS REST polygon object. A polygon contains an array of rings. The first point of each ring is always the same as the last point. Each point in the ring is represented as an array of numbers containing x- and y-coordinate values at index 0 and 1, respectively.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for polygon_barriers

When specifying the polygon barriers, you can set properties for each, such as its name or barrier type, using the following attributes:

Name

The name of the barrier.

BarrierType

Specifies whether the barrier restricts travel completely or scales the cost (such as time or distance) for traveling through it. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

  • 0 (Restriction)—Prohibits traveling through any part of the barrier. The barrier is referred to as a restriction polygon barrier since it prohibits traveling on streets intersected by the barrier. One use of this type of barrier is to model floods covering areas of the street that make traveling on those streets impossible.
    Two maps demonstrate how a restriction polygon barrier affects finding a route between two stops.
    The left side depicts the shortest path between two stops. On the right, a polygon barrier blocks flooded streets, so the shortest path between the same two stops is different.
  • 1 (Scaled Cost)—Scales the time or distance required to travel the underlying streets by a factor specified using the ScaledTimeFactoror ScaledDistanceFactor field. If the streets are partially covered by the barrier, the travel time or distance is apportioned and then scaled. For example, a factor 0.25 would mean that travel on underlying streets is expected to be four times faster than normal. A factor of 3.0 would mean it is expected to take three times longer than normal to travel on underlying streets. This barrier type is referred to as a scaled-cost polygon barrier. It might be used to model storms that reduce travel speeds in specific regions.
    Two maps demonstrate how a scaled cost polygon barrier affects finding a route between two stops.
    The map on the left shows a route that goes through inclement weather without regard for the effect poor road conditions have on travel time. On the right, a scaled polygon barrier doubles the travel time of the roads covered by the storm. Notice the route still passes through the southern tip of the storm since it's quicker to spend more time driving slowly through a small part of the storm rather than driving completely around it. The service uses the modified travel time in calculating the best route; furthermore, the modified travel time is reported as the total travel time in the response.

ScaledTimeFactor

This is the factor by which the travel time of the streets intersected by the barrier is multiplied. The field value must be greater than zero.

This field is applicable only for scaled-cost barriers and when the Measurement Units parameter is time-based.

ScaledDistanceFactor

This is the factor by which the distance of the streets intersected by the barrier is multiplied. The field value must be greater than zero.

This field is applicable only for scaled-cost barriers and when the Measurement Units parameter is distance-based.

ScaledCostFactor

This is the factor by which the cost of the streets intersected by the barrier is multiplied. The field value must be greater than zero.

This field is applicable only for scaled-cost barriers when the Measurement Units parameter is neither time-based nor distance-based.

Syntax for specifying polygon barriers using a JSON structure for features
{
    "spatialReference": {
        "wkid": <wkid>,
        "latestWkid": <wkid>    
    }
    "features": [
        {
            "geometry": {
                "rings": [
                    [
                        [
                            <x11>,
                            <y11>
                        ],
                        [
                            <x12>,
                            <y12>
                        ],
                        ...,
                        [
                            <x11>,
                            <y11>
                        ]
                    ],
                    [
                        [
                            <x21>,
                            <y21>
                        ],
                        [
                            <x22>,
                            <y22>
                        ],
                        ...,
                        [
                            <x21>,
                            <y21>
                        ]
                    ]
                ]
            },
            "attributes": {
                "<field1>": <value11>,
                "<field2>": <value12>
            }
        },
        {
            "geometry": {
                "rings": [
                    [
                        [
                            <x11>,
                            <y11>
                        ],
                        [
                            <x12>,
                            <y12>
                        ],
                        ...,
                        [
                            <x11>,
                            <y11>
                        ]
                    ],
                    [
                        [
                            <x21>,
                            <y21>
                        ],
                        [
                            <x22>,
                            <y22>
                        ],
                        ...,
                        [
                            <x21>,
                            <y21>
                        ]
                    ]
                ]
            },
            "attributes": {
                "<field1>": <value21>,
                "<field2>": <value22>
            }
        }
    ]
}

Example 1: Specifying polygon barriers using a JSON structure

This example shows how to add two polygons as barriers. The first polygon, named Flood zone, is a restriction polygon barrier that prohibits travel on the underlying streets. The polygon is a single-part polygon feature made up of four points. The second polygon, named Severe weather zone, is a scaled cost polygon barrier that increases the travel time on underlying streets to one-third of the original value. The polygon is a two-part polygon feature. Both parts are made up of four points.

The barrier geometries are in the default spatial reference, WGS84. Therefore, the spatialReference property is not required.

{
    "features": [
        {
            "geometry": {
                "rings": [
                    [
                        [
                            -97.0634,
                            32.8442
                        ],
                        [
                            -97.0554,
                            32.84
                        ],
                        [
                            -97.0558,
                            32.8327
                        ],
                        [
                            -97.0638,
                            32.83
                        ],
                        [
                            -97.0634,
                            32.8442
                        ]
                    ]
                ]
            },
            "attributes": {
                "Name": "Flood zone",
                "BarrierType": 0
            }
        },
        {
            "geometry": {
                "rings": [
                    [
                        [
                            -97.0803,
                            32.8235
                        ],
                        [
                            -97.0776,
                            32.8277
                        ],
                        [
                            -97.074,
                            32.8254
                        ],
                        [
                            -97.0767,
                            32.8227
                        ],
                        [
                            -97.0803,
                            32.8235
                        ]
                    ],
                    [
                        [
                            -97.0871,
                            32.8311
                        ],
                        [
                            -97.0831,
                            32.8292
                        ],
                        [
                            -97.0853,
                            32.8259
                        ],
                        [
                            -97.0892,
                            32.8279
                        ],
                        [
                            -97.0871,
                            32.8311
                        ]
                    ]
                ]
            },
            "attributes": {
                "Name": "Severe weather zone",
                "BarrierType": 1,
                "ScaledTimeFactor": 3
            }
        }
    ]
}

Syntax for specifying polygon barriers using a URL returning a JSON response
{
    "url": "<url>"
}

Example 2: Specifying a polygon barrier using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
    "url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/7/query?where=1%3D1&returnGeometry=true&f=json"
}

use_hierarchy

Specify whether hierarchy should be used when finding the shortest paths.

Caution:

The value of this parameter, regardless of whether you rely on the default or explicitly set a value, is overridden when travel_mode is set to any other value than Custom. The default value for travel_mode is Driving, so unless you set travel_mode to a different value, this parameter value will be overridden.

  • true—Use hierarchy when measuring between points. This is the default value. When hierarchy is used, the tool prefers higher-order streets (such as freeways) to lower-order streets (such as local roads), and can be used to simulate the driver preference of traveling on freeways instead of local roads even if that means a longer trip. This is especially true when finding routes to faraway locations, because drivers on long-distance trips tend to prefer traveling on freeways where stops, intersections, and turns can be avoided. Using hierarchy is computationally faster, especially for long-distance routes, since the tool can determine the best route from a relatively smaller subset of streets.

  • false—Do not use hierarchy when measuring between stops. If hierarchy is not used, the tool considers all the streets and doesn't prefer higher-order streets when finding the route. This is often used when finding short-distance routes within a city.

Caution:

The service automatically reverts to using hierarchy if the straight-line distance between the stops is greater than 50 miles (80.46 kilometers), even if you have specified to find the route without using hierarchy.

restrictions

Use this parameter to specify which restrictions should be honored by the service. A restriction represents a driving preference or requirement. In most cases, restrictions cause roads or pathways to be prohibited, but they can also cause them to be avoided or preferred. For instance, using an Avoid Toll Roads restriction will result in a route that will include toll roads only when it is absolutely required to travel on toll roads in order to visit a stop. Height Restriction makes it possible to route around any clearances that are lower than the height of your vehicle. If you are carrying corrosive materials on your vehicle, using the Any Hazmat Prohibited restriction prevents hauling the materials along roads where it is marked as illegal to do so.

Caution:

The value for this parameter, regardless of whether you rely on the default or explicitly set a value, is used in the analysis only when the travel_mode parameter is set to Custom.

Note:

Some restrictions are supported only in certain countries. If you specify restriction names that are not available in the country where your input points are located, the service ignores the invalid restrictions and returns warning messages indicating the names for the restrictions that were not considered when performing the analysis.

Note:

Sometimes you need to specify an additional value, the restriction attribute parameter, on a restriction to get the intended results. This value needs to be associated with the restriction name and a restriction parameter using attribute_parameter_values.

The service supports the restriction names listed in the following table:

Restriction NameDescription

Any Hazmat Prohibited

The result will exclude roads where transporting any kind of hazardous material is prohibited.

Avoid Carpool Roads

The result will avoid roads designated exclusively for carpool (high-occupancy) vehicles.

Avoid Express Lanes

The result will avoid roads designated as express lanes.

Avoid Ferries

The result will avoid ferries.

Avoid Gates

The result will avoid roads where there are gates, such as keyed-access or guard-controlled entryways.

Avoid Limited Access Roads

The result will avoid roads designated as limited-access highways.

Avoid Private Roads

The result will avoid roads that are not publicly owned and maintained.

Avoid Roads Unsuitable for Pedestrians

The result will avoid roads that are unsuitable for pedestrians.

Avoid Stairways

The result will avoid all stairways on a pedestrian suitable route.

Avoid Toll Roads

The result will avoid toll roads.

Avoid Toll Roads for Trucks

The result will avoid all toll roads for trucks

Avoid Truck Restricted Roads

The result will avoid roads where trucks are not allowed except when making deliveries.

Avoid Unpaved Roads

The result will avoid roads that are not paved (for example, dirt, gravel, etc.).

Axle Count Restriction

The result will not include roads where trucks with the specified number of axles are prohibited. The number of axles can be specified using the Number of Axles restriction parameter.

Driving a Bus

The result will exclude roads where buses are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving a Taxi

The result will exclude roads where taxis are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving a Truck

The result will exclude roads where trucks are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving an Automobile

The result will exclude roads where automobiles are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving an Emergency Vehicle

The result will exclude roads where emergency vehicles are prohibited. Using this restriction also ensures the route will honor one-way streets.

Height Restriction

The result will exclude roads where the vehicle height exceeds the maximum allowed height for the road. The vehicle height can be specified using the Vehicle Height (meters) restriction parameter.

Kingpin to Rear Axle Length Restriction

The result will exclude roads where the vehicle kingpin-to-rear-axle length exceeds the maximum allowed for the road. The vehicle's length between the vehicle kingpin and the rear axle can be specified using the Vehicle Kingpin to Rear Axle Length (meters) restriction parameter.

Length Restriction

The result will exclude roads where the vehicle length exceeds the maximum allowed length for the road. The vehicle length can be specified using the Vehicle Length (meters) restriction parameter.

Preferred for Pedestrians

The result prefers paths designated for pedestrians.

Riding a Motorcycle

The result will exclude roads where motorcycles are prohibited. Using this restriction also ensures the route will honor one-way streets.

Roads Under Construction Prohibited

The result will exclude roads that are under construction.

Semi or Tractor with One or More Trailers Prohibited

The result will exclude roads where semis or tractors with one or more trailers are prohibited.

Single Axle Vehicles Prohibited

The result will exclude roads where vehicles with single axles are prohibited.

Tandem Axle Vehicles Prohibited

The result will exclude roads where vehicles with tandem axles are prohibited.

Through Traffic Prohibited

The result will exclude roads where through traffic (non-local) is prohibited.

Truck with Trailers Restriction

The result will exclude roads where trucks with the specified number of trailers on the truck are prohibited. The number of trailers on the truck can be specified using the Number of Trailers on Truck restriction parameter.

Use Preferred Hazmat Routes

The result will prefer roads designated for transporting any kind of hazardous materials.

Use Preferred Truck Routes

The result will prefer roads designated as truck routes, such as the roads that are part of the national network as specified by the National Surface Transportation Assistance Act in the United States, or roads that are designated as truck routes by the state or province, or or roads in an area that are generally more suitable for trucks.

Walking

The result will exclude roads where pedestrians are prohibited.

Weight Restriction

The result will exclude roads where the vehicle weight exceeds the maximum allowed weight for the road. The vehicle weight can be specified using the Vehicle Weight (kilograms) restriction parameter.

Weight per Axle Restriction

The result will exclude roads where the vehicle's weight per axle exceeds the maximum allowed for the road. The vehicle's weight per axle can be specified using the Vehicle Weight per Axle (kilograms) restriction parameter.

Width Restriction

The result will roads where the vehicle width exceeds the maximum allowed for the road. The vehicle width can be specified using the Vehicle Width(meters) restriction parameter.

Legacy:

The Driving a Delivery Vehicle restriction attribute is no longer available. The service will ignore this restriction since it is invalid. To achieve similar results, use the Driving a Truck restriction attribute along with the Avoid Truck Restricted Roads restriction attribute.

The restrictions parameter value is specified as a list of restriction names. The default value for this parameter is restrictions=[Avoid Carpool Roads, Avoid Express Lanes, Avoid Gates, Avoid Private Roads, Avoid Unpaved Roads, Driving an Automobile, Roads Under Construction Prohibited, Through Traffic Prohibited]. A value of null indicates that no restrictions should be used when finding the best route, but only when travel_mode is set to Custom.

Example: restrictions=[Driving a Truck,Height Restriction,Length Restriction]

attribute_parameter_values

Use this parameter to specify additional values required by an attribute or restriction, such as to specify whether the restriction prohibits, avoids, or prefers travel on restricted roads. If the restriction is meant to avoid or prefer roads, you can further specify the degree to which they are avoided or preferred using this parameter.

Caution:

The value for this parameter, regardless of whether you rely on the default or explicitly set a value, is used in the analysis only when the travel_mode parameter is set to Custom.

The attributes_parameter_values parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents an attribute parameter and contains the following properties:

  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.
Note:

The JSON structure for the attribute_parameter_values parameter does not have a geometry property.

Attributes for attribute_parameter_values

The attribute_parameter_values parameter can be specified with the following attributes:

  • AttributeName: Lists the name of the restriction.
  • ParameterName: Lists the name of the parameter associated with the restriction. A restriction can have one or more ParameterName values based on its intended use, which implies you may need multiple attribute_parameter_values parameters for a single attribute name.
  • ParameterValue: The value for the ParameterName that is used by the service when evaluating the restriction.

Note:

In most cases, the attribute_parameter_values parameter is dependent on the restrictions parameter. The ParameterValue specified as part of attribute_parameter_values is applicable only if the restriction name is specified as the value for the restrictions parameter.

When specifying the attribute_parameter_values parameter, each restriction (listed as AttributeName) has a ParameterName value, Restriction Usage, that specifies whether the restriction prohibits, avoids, or prefers travel on the roads associated with the restriction and the degree to which the roads are avoided or preferred.

The Restriction Usage ParameterName can be assigned any of the following string values or their equivalent numeric values listed within the parentheses:

  • PROHIBITED (-1)—Travel on the roads using the restriction is completely prohibited.
  • AVOID_HIGH (5)—It is very unlikely for the service to include, in the results, roads that are associated with the restriction.
  • AVOID_MEDIUM (2)—It is unlikely for the service to include, in the results, roads that are associated with the restriction.
  • AVOID_LOW (1.3)—It is somewhat unlikely for the service to include, in the results, roads that are associated with the restriction.
  • PREFER_LOW (0.8)—It is somewhat likely for the service to include, in the results, results roads that are associated with the restriction.
  • PREFER_MEDIUM(0.5)—It is likely for the service to include, in the results, roads that are associated with the restriction.
  • PREFER_HIGH (0.2)—It is very likely for the service to include, in the results, roads that are associated with the restriction.

In most cases, you can use the default value, PROHIBITED, for Restriction Usage if the restriction is dependent on a physical vehicle characteristic, such as vehicle height. However, in some cases, the value for Restriction Usage depends on your travel preferences. For example, the Avoid Toll Roads restriction has the default value of AVOID_MEDIUM for the Restriction Usage parameter. This means that when the restriction is used, the service will try to route around toll roads when it can. AVOID_MEDIUM also indicates how important it is to avoid toll roads when finding the best route; it has a medium priority. Choosing AVOID_LOW would put lower importance on avoiding tolls; choosing AVOID_HIGH instead would give it a higher importance and thus make it more acceptable for the service to generate longer routes to avoid tolls. Choosing PROHIBITED would entirely disallow travel on toll roads, making it impossible for a route to travel on any portion of a toll road. Keep in mind that avoiding or prohibiting toll roads, and thus avoiding toll payments, is the objective for some; in contrast, others prefer to drive on toll roads because avoiding traffic is more valuable to them than the money spent on tolls. In the latter case, you would choose PREFER_LOW, PREFER_MEDIUM, or PREFER_HIGH as the value for Restriction Usage. The higher the preference, the farther the service will go out of its way to travel on the roads associated with the restriction.

The following table lists the restriction names and the default restriction parameter values for all the restrictions. The default value for the attribute_parameter_values parameter is the JSON structure containing all the rows from the below table.

Tip:

If you want to use the default value for any restriction, AttributeName, ParameterName, and ParameterValue do not have to be specified as part of the attribute_parameter_values parameter.

AttributeNameParameterNameParameterValue

Any Hazmat Prohibited

Restriction Usage

PROHIBITED

Avoid Carpool Roads

Restriction Usage

PROHIBITED

Avoid Express Lanes

Restriction Usage

PROHIBITED

Avoid Ferries

Restriction Usage

AVOID_MEDIUM

Avoid Gates

Restriction Usage

AVOID_MEDIUM

Avoid Limited Access Roads

Restriction Usage

AVOID_MEDIUM

Avoid Private Roads

Restriction Usage

AVOID_MEDIUM

Avoid Roads Unsuitable for Pedestrians

Restriction Usage

AVOID_HIGH

Avoid Stairways

Restriction Usage

AVOID_HIGH

Avoid Toll Roads

Restriction Usage

AVOID_MEDIUM

Avoid Toll Roads for Trucks

Restriction Usage

AVOID_MEDIUM

Avoid Truck Restricted Roads

Restriction Usage

AVOID_HIGH

Avoid Unpaved Roads

Restriction Usage

AVOID_HIGH

Axle Count Restriction

Number of Axles

0

Restriction Usage

PROHIBITED

Driving a Bus

Restriction Usage

PROHIBITED

Driving a Taxi

Restriction Usage

PROHIBITED

Driving a Truck

Restriction Usage

PROHIBITED

Driving an Automobile

Restriction Usage

PROHIBITED

Driving an Emergency Vehicle

Restriction Usage

PROHIBITED

Height Restriction

Restriction Usage

PROHIBITED

Vehicle Height (meters)

0

Kingpin to Rear Axle Length Restriction

Restriction Usage

PROHIBITED

Vehicle Kingpin to Rear Axle Length (meters)

0

Length Restriction

Restriction Usage

PROHIBITED

Vehicle Length (meters)

0

Preferred for Pedestrians

Restriction Usage

PREFER_LOW

Riding a Motorcycle

Restriction Usage

PROHIBITED

Roads Under Construction Prohibited

Restriction Usage

PROHIBITED

Semi or Tractor with One or More Trailers Prohibited

Restriction Usage

PROHIBITED

Single Axle Vehicles Prohibited

Restriction Usage

PROHIBITED

Tandem Axle Vehicles Prohibited

Restriction Usage

PROHIBITED

Through Traffic Prohibited

Restriction Usage

AVOID_HIGH

Truck with Trailers Restriction

Restriction Usage

PROHIBITED

Number of Trailers on Truck

0

Use Preferred Hazmat Routes

Restriction Usage

PREFER_MEDIUM

Use Preferred Truck Routes

Restriction Usage

PREFER_HIGH

Walking

Restriction Usage

PROHIBITED

WalkTime

Walking Speed (km/h)

5

Weight Restriction

Restriction Usage

PROHIBITED

Vehicle Weight (kilograms)

0

Weight per Axle Restriction

Restriction Usage

PROHIBITED

Vehicle Weight per Axle (kilograms)

0

Width Restriction

Restriction Usage

PROHIBITED

Vehicle Width (meters)

0

Syntax for specifying attribute_parameter_values
{
    "features": [
        {
            "attributes": {
                "<field1>": <value11>,
                "<field2>": <value12>,
                "<field3>": <value13>

            }
        },
        {
            "attributes": {
                "<field1>": <value21>,
                "<field2>": <value22>,
                "<field3>": <value13>
            }
        }
    ] 
}

Example: Specifying the vehicle height and weight and a high preference to use designated truck routes

This example shows how to specify the height and weight of the vehicle for use with the height and weight restrictions respectively along with a high preference to include designated truck routes. This results in a route that does not include any roads where the clearance under overpasses or through tunnels is less than the vehicle height. The results will also not include any roads with load limited bridges or local roads that prohibit heavy vehicles if the vehicle weight exceeds the maximum permissible weight. However, the route will include as many roads as possible that are designated as preferred truck routes.

Note that the Restriction Usage ParameterName for the Height Restriction and the Weight Restriction restrictions are not specified since we want to use the default value of PROHIBITED for these restriction parameters.

attribute_parameter_values=
{
    "features": [
        {
            "attributes": {
                "AttributeName": "Height Restriction",
                "ParameterName": "Vehicle Height (meters)",
                "ParameterValue": 4.12
            }
        },
        {
            "attributes": {
                "AttributeName": "Weight Restriction",
                "ParameterName": "Vehicle Weight (kilograms)",
                "ParameterValue": 36287
            }
        },
        {
            "attributes": {
                "AttributeName": "Use Preferred Truck Routes",
                "ParameterName": "Restriction Usage",
                "ParameterValue": "PREFER_HIGH"
            }
        }
    ]
}

route_shape

Use this parameter to specify the type of route features that are output by the service. The parameter can be specified using one of the following values:

  • True Shape (default): Return the exact shape of the resulting route that is based on the underlying streets. Since this option creates the most detailed geometry for the output routes, choosing it tends to make the process run longer and create larger output files.
  • True Shape with Measures: Return the exact shape of the resulting route that is based on the underlying streets. Additionally, construct measures so the shape may be used in linear referencing. The measurements increase from the first stop and record the cumulative travel time or travel distance in the units specified by the measurement_units parameter.
  • Straight Line: Return a straight line between the route start and end.
  • None: Do not return any route shapes. This value can be useful in cases where you want to optimize performance and are only interested in determing the route's total travel time or travel distance, but not the route paths.

When the route_shape parameter is set to True Shape, or True Shape with Measure, the generalization of the route shape can be further controlled using the appropriate value for the route_ line_simplification_tolerance parameter.

No matter which value you choose for the route_shape parameter, the best route is always determined by minimizing the travel time or the travel distance, never using the straight-line distance between stops. This means that only the route shapes are different, not the underlying streets that are searched when finding the route.

Tip:

Specifying True Shape or True Shape with Measures creates the most detailed geometry for the output routes. So choosing these options tends to increase the response time for the request and also create larger responses. So use these options only when the exact route shape is required.

route_line_simplification_tolerance

Use this parameter to specify by how much you want to simplify the route geometry returned by the service.

Caution:

The value for this parameter, regardless of whether you rely on the default or explicitly set a value, is used in the analysis only when the travel_mode parameter is set to Custom.

This parameter is relevant only when route_shape is set to True Shape or True Shape with Measures because the other route_shape options cannot be simplified further.

Simplification maintains critical points on a route, such as turns at intersections, to define the essential shape of the route and removes other points. The simplification distance you specify is the maximum allowable offset that the simplified line can deviate from the original line. Simplifying a line reduces the number of vertices that are part of the route geometry. This reduces the overall response size and also improves the performance for drawing the route shapes in applications.

The parameter is specified as a JSON structure that includes the following properties:

  • distance: The simplification distance value.
  • units: The units for the simplification distance value. The property value should be specified as one of the following values: esriCentimeters, esriDecimalDegrees, esriDecimeters, esriFeet, esriInches, esriKilometers, esriMeters, esriMiles, esriMillimeters, esriNauticalMiles, esriPoints, and esriYards.

The default value for the route_line_simplification_tolerance parameter is 10 meters.

Syntax for specifying route_line_simplification_tolerance
{
    "distance": <value>,
    "units": "<unit>"
}

Example: Specifying route_line_simplification_tolerance of 10 meters
{
    "distance": 10,
    "units": "esriMeters"
}

populate_route_edges

Use this parameter to specify whether the tool should generate edges for each route. Route edges represent the individual street features or other similar features, such as trails, that are traversed by a route. The output route edges is commonly used to see which streets are traveled on the most or least by the resultant routes.

  • true—Generate route edges.

  • false—Don't generate route edges. This is the default value.

populate_directions

Use this parameter to specify whether the service should generate driving directions for each route.

  • true—Generate directions. This is the default value. The directions are configued based on the values for the directions_language, directions_style_name, and directions_distance_units parameters.

  • false—Don't generate directions. The service returns an empty value for the features property within the output_directions output parameter.

directions_language

Use this parameter to specify the language that should be used when generating driving directions. This parameter is used only when the populate_directions parameter is set to true.

The parameter value can be specified using one of the following two- or five-character language codes:

  • ar—Arabic
  • bs—Bosnian
  • ca—Catalan
  • cs—Czech
  • da—Danish
  • de—German
  • el—Greek
  • en—English
  • es—Spanish
  • et—Estonian
  • fi—Finnish
  • fr—French
  • he—Hebrew
  • hi—Hindi
  • hr—Croatian
  • hu—Hungarian
  • id—Indonesian
  • it—Italian
  • ja—Japanese
  • ko—Korean
  • lt—Lithuanian
  • lv—Latvian
  • nb—Norwegian
  • nl—Dutch
  • pl—Polish
  • pt-BR—Brazilian Portuguese
  • pt-PT—European Portuguese
  • ro—Romanian
  • ru—Russian
  • sl—Slovenian
  • sr—Serbian
  • sv—Swedish
  • th—Thai
  • tr—Turkish
  • uk—Ukrainian
  • vi—Vietnamese
  • zh-CN—Simplified Chinese
  • zh-HK—Traditional Chinese (Hong Kong)
  • zh-TW—Traditional Chinese (Taiwan)

The tool first tries to find an exact match for the specified language including any language localization. If an exact match is not found, it tries to match the language family. If a match is still not found, the tool returns the directions using the default language, English. For example, if the directions language is specified as es-MX (Mexican Spanish), the tool will return the directions in Spanish as it supports es language code and not es-MX.

Caution:

If a language supports localization, such as Brazilian Portuguese (pt-BR) and European Portuguese (pt-PT), you should specify the language family and the localization. If you only specify the language family, the tool will not match the language family and instead return directions in the default language, English. For example, if the directions language is specified as pt, the tool will return the directions in English since it cannot decide if the directions should be returned in pt-BR or pt-PT.

directions_distance_units

Specify the units for displaying travel distance in the driving directions. This parameter is used only when the populate_directions parameter is set to true. The parameter can be specified using one of the following values:

  • Miles (default)
  • Kilometers
  • Meters
  • Feet
  • Yards
  • NauticalMiles

directions_style_name

Use this parameter to specify the name of the formatting style for the directions. This parameter is used only when the populate_directions parameter is set to true. The parameter can be specified using the following values:

  • NA Desktop (default)—Generates turn-by-turn directions suitable for printing.
  • NA Navigation—Generates turn-by-turn directions designed for an in-vehicle navigation device.

impedance

Specify the impedance, which is a value that represents the effort or cost of traveling along road segments or on other parts of the transportation network.

Travel time is an impedance; a car may take one minute to travel a mile along an empty road. Travel times can vary by travel mode—a pedestrian may take more than 20 minutes to walk the same mile, so it is important to choose the right impedance for the travel mode you are modeling.

Travel distance can also be an impedance; the length of a road in kilometers can be thought of as impedance. Travel distance in this sense is the same for all modes—a kilometer for a pedestrian is also a kilometer for a car. (What may change is the pathways on which the different modes are allowed to travel, which affects distance between points, and this is modeled by travel mode settings.)

Caution:

The value you provide for this parameter is ignored unless travel_mode is set to Custom, which is the default value.

Choose from the following impedance values:

  • TravelTime—takes advantage of historical and live traffic data and is good for modeling the time it takes automobiles to travel along roads at a specific time of the day using live traffic speed data where available. When using TravelTime, you can optionally specify the TravelTime::Vehicle Maximum Speed (km/h) attribute parameter to specify the physical limitation of the speed the vehicle is capable of traveling.
  • Minutes—does not use live traffic data but uses the historical average speeds for automobiles.
  • TruckTravelTime—takes advantage of historical and live traffic data, but caps the speed to the posted truck speed limit. This is good for modeling the time it takes for the trucks to travel along roads at a specific time. When using TruckTravelTime, you can optionally specify the TruckTravelTime::Vehicle Maximum Speed (km/h) attribute parameter to specify the physical limitation of the speed the truck is capable of traveling.
  • TruckMinutes—does not use live traffic data but uses the smaller of the historical average speeds for automobiles and the posted speed limits for trucks.
  • WalkTime—defaults to a speed of 5 km/hr on all roads and paths, but this can be configured through the WalkTime::Walking Speed (km/h) attribute parameter.
  • Miles—Stores length measurements along roads in miles and can be used for performing analysis based on shortest distance.
  • Kilometers—Stores length measurements along roads in kilometers and can be used for performing analysis based on shortest distance.
  • TimeAt1KPH—defaults to a speed of 1 km/hr on all roads and paths. The speed cannot be changed using any attribute parameters.

If you choose a time-based impedance, such as TravelTime, TruckTravelTime, Minutes, TruckMinutes, or WalkTime, the measurement_units parameter must be set to a time-based value; if you choose a distance-based impedance such as Miles, Kilometers, the measurement_units must be distance-based.

Legacy:

Drive Time, Truck Time, Walk Time, and Travel Distance impedance values are no longer supported and will be removed in a future release. If you use one of these values, the tool uses the value of the time_impedance parameter for time-based values or distance_impedance parameter for distance-based values.

save_route_data

Use this parameter to specify whether the service should create a zip file that contains a file geodatabase holding the inputs and outputs of the analysis in a format that can be used to share route layers with your portal.

  • true—Saves route data. The route data zip file can be downloaded from the URL provided as part of the output_route_data parameter.

  • false—Don't save route data. This is the default value.

save_output_network_analysis_layer

Use this parameter to specify if the service should save the analysis settings as a network analysis layer file. You cannot directly work with this file even when you open the file in an ArcGIS Desktop application like ArcMap. It is meant to be sent to Esri Technical Support in order to diagnose the quality of results returned from the service.

  • true—Saves network analysis layer file. The file can be downloaded from the URL provided as part of the output_network_analysis_layer parameter.

  • false—Don't save network analysis layer file. This is the default value.

overrides

Specify additional settings that can influence the behavior of the solver when finding solutions for the network analysis problems.

The value for this parameter needs to be specified in JavaScript Object Notation (JSON). The values can be either a number, Boolean, or a string.

{
"overrideSetting1" : "value1", 
"overrideSetting2" : "value2"
}

The default value for this parameter is no value, which indicates not to override any solver settings.

Overrides are advanced settings that should be used only after careful analysis of the results obtained before and after applying the settings. A list of supported override settings for each solver and their acceptable values can be obtained by contacting Esri Technical Support.

time_impedance

The time-based impedance is a value that represents the travel time along road segments or on other parts of the transportation network.

Note:
If the impedance for the travel mode, as specified using the Impedance parameter, is time based, the values for the Time Impedance and Impedance parameters must be identical. Otherwise, the service will return an error.

distance_impedance

The distance-based impedance is a value that represents the travel distance along road segments or on other parts of the transportation network.

Note:
If the impedance for the travel mode, as specified using the Impedance parameter, is distance based, the values for the Distance Impedance and Impedance parameters must be identical. Otherwise, the service will return an error.

output_format

Specifies the format in which the output features will be created.

  • Feature Set—The output features will be returned as feature classes and tables. This is the default.
  • JSON File—The output features will be returned as a compressed file containing the JSON representation of the outputs. When this option is specified, the output is a single file (with a .zip extension) that contains one or more JSON files (with a .json extension) for each of the outputs created by the service.
  • GeoJSON File—The output features will be returned as a compressed file containing the GeoJSON representation of the outputs. When this option is specified, the output is a single file (with a .zip extension) that contains one or more GeoJSON files (with a .geojson extension) for each of the outputs created by the service.

Tip:

Specifying file based output format, such asJSON File, is useful when you are calling the service using the REST endpoint of the service. In such cases, returning all the outputs as a single file allows you to download large results that can be generated by the service. For example, if you are working with GenerateOriginDestinationCostMatrix service and you generate a travel matrix with 1,000,000 records, returning such a large output as a Feature Set can cause the service to fail since the service will try to send the entire output in a single attempt. With a file based output, the service sends the output in multiple chunks reducing the possibility of timeouts when returning the outputs.

env:outSR

Use this parameter to specify the spatial reference of the geometries, such as the routes or the directions, returned by the service.

The parameter value can be specified as a well-known ID (WKID) for the spatial reference. If env:outSR is not specified, the geometries are returned in the default spatial reference, WGS84. See Geographic coordinate systems and Projected coordinate systems to look up WKID values.

Many of the basemaps provided by ArcGIS Online are in the Web Mercator spatial reference (WKID 102100). Specifying env:outSR=102100 returns the geometries in the Web Mercator spatial reference, which can be drawn on top of the basemaps.

ignore_invalid_locations

Specifies whether invalid input locations will be ignored.

  • true

    Network locations that are unlocated will be ignored and the analysis will run using valid network locations only. The analysis will also continue if locations are on nontraversable elements or have other errors. This is useful if you know your network locations are not all correct, but you want to run the analysis with the network locations that are valid. This is the default.

  • false

    Invalid locations will not be ignored. Do not run the analysis if there are invalid locations. Correct the invalid locations and rerun the analysis.

JSON response

When you submit a request, the service assigns a unique job ID for the transaction. The job ID and the status of the job are returned in the response.

JSON response syntax from the request
{
    "jobId": <jobID>,
    "jobStatus": <jobStatus>
}

The jobStatus property can have the following values:

  • esriJobSubmitted
  • esriJobWaiting
  • esriJobExecuting
  • esriJobSucceeded
  • esriJobFailed
  • esriJobTimedOut
  • esriJobCancelling
  • esriJobCancelled

You can use the job ID to periodically check the status of the job and messages. Additionally, if the job has successfully completed, you can use the job ID to retrieve the results or even the inputs. The job information and results remain available for 24 hours after the job is done.

After the initial request is submitted, you can make a request of the following form to get the status of the job:

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>?token=<yourToken>&returnMessages=true&f=json

JSON response syntax during job execution
{
    "jobId": "<jobId>",
    "jobStatus": "<jobStatus>",
    "messages": [
        {
            "type": "<type1>",
            "description": "<description1>"
        },
        {
            "type": "<type2>",
            "description": "<description2>"
        }
    ]
}

While a job is executing, you can cancel it by making a request of the form:

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/cancel?token=<yourToken>&f=json

Note:

When you submit your request, if the service is busy processing other requests, the job will wait in the queue. The job status will be reported as esriJobSubmitted. If your application cannot wait for the entire duration while the job is in the queue, you can cancel the request and submit it at a later time. A canceled request will not incur any service credits. However, if your application did not cancel the request, it will eventually execute and will incur service credits irrespective of whether your application retrieved the results or ignored them. Therefore, your application should always cancel the request if required.

After the successful completion of the job, you can make a request of the following form to retrieve the outputs. Refer to the Output parameters section for more information on how to interpret the solution provided by the service.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/results/<output_parameter_name>?token=<yourToken>&f=json

The feature geometries are returned by default in the WGS84 spatial reference. You can get the feature geometries in any spatial reference by specifying the outSR parameter when retrieving an output parameter. The below example shows how to retrieve an output parameter with feature geometries in Web Mercator (WKID: 102100) spatial reference.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/results/<output_parameter_name>?token=<yourToken>&f=json&outSR=102100

You can also retrieve the value for any input parameter by making the requests of the following form:

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/inputs/<inputParameterName>?token=<yourToken>&f=json

Output parameters

Upon successful execution, the service returns the best paths between the stops and the status indicating if the analysis was successful using the following output parameters.

Tip:

The geometries for the output parameters are returned by default in the WGS84 (wkid: 4326) spatial reference. You can get the geometries in a different spatial reference using the env:outSR parameter when submitting the request or by using the outSR parameter when retrieving any output parameter.

output_routes

This provides access to the resulting routes.

The following table lists the fields returned for output routes:

FieldDescription

Name

The name of the route is based on the RouteName field of the associated stops. If the input RouteName field is null, the name is derived from the Name field of the first and last stops.

StopCount

The number of stops assigned to the route.

StartTime

The start time of the route, reported in the time zone in which the first stop is located.

EndTime

The end time of the route, reported in the time zone in which the last stop is located.

StartTimeUTC

The start time of the route in coordinated universal time (UTC).

EndTimeUTC

The end time of the route in coordinated universal time (UTC).

Total_Minutes

The cumulative travel time in minutes from the beginning of the first stop to the end of the last stop for a route. This includes any AdditionalTime for the visited stops if specified.

Note:

An additional field, Total_[TimeUnits], is included if measurement_units is time based and its value is not set to Minutes. The field values are in the units specified by the measurement_units parameter.

Note:

Additional fields, Total_[AccumulateAttributeName]_[TimeUnits], are included for each time-based cost attribute that is accumulated during the analysis.

Total_Miles

The cumulative travel distance in miles from the beginning of the first stop to the end of the last stop for a route. This includes any AdditionalDistance for the visited stops if specified.

Note:

An additional field, Total_[DistanceUnits], is included if the measurement_units parameter is distance based and its value is not Miles or Kilometers. The field values are in the units specified by the measurement_units parameter.

Note:

Additional fields, Total_[AccumulateAttributeName]_[DistanceUnits], are included for each distance-based cost attribute that is accumulated during the analysis.

Total_Kilometers

The cumulative travel distance in kilometers from the beginning of the first stop to the end of the last stop for a route. This includes any AdditionalDistance for the visited stops if specified.

Total_Other

The cumulative travel cost in unknown units from the beginning of the first stop to the end of the last stop for a route. This includes any AdditionalCost for the visited stops if specified.

This field is included only when the travel mode used for the analysis has an impedance attribute that is neither time based nor distance based.

Note:

Additional fields, Total_[AccumulateAttributeName]_Other, are included for each cost attribute that is neither time based nor distance based and accumulated during the analysis.

TotalWait_Minutes

This field stores the route's overall wait time, which is the time spent at stops waiting for time windows to open.

The field has a null value if time windows are not used in the analysis.

Note:

An additional field, TotalWait_[TimeUnits], is included if the measurement_units parameter is not set to Minutes. The field values are in the units specified by the measurement_units parameter.

Note:

Additional fields, TotalWait_[AccumulateAttributeName]_[TimeUnits], are included for each time-based cost attribute that is accumulated during the analysis.

TotalViolation_Minutes

This field stores the route's overall violation time at stops. Violation time is added when the route arrives at a stop after the time window has ended; it's the difference between the ArriveTime and TimeWindowEnd fields on inputs stops.

The field has a null value if time windows are not used in the analysis.

Note:

An additional field, TotalViolation_[TimeUnits], is included if the timeUnits property of the analysis object is not set to TimeUnits.Minutes. The field values are in the units specified by the timeUnits property.

Additional fields, TotalViolation_[AccumulateAttributeName]_[TimeUnits], are included for each time-based cost attribute that is accumulated during the analysis.

FirstStopOID

The ObjectID value of the first stop on the route. This field is often used to join information from input stops to routes.

LastStopOID

The ObjectID value of the last stop on the route. This field is often used to join information from input stops to routes.

The output_routes parameter is returned as a JSON feature set with following syntax:

{
    "paramName": "Output_Routes",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": <wkid>,
            "latestWkid": <wkid>,
            
        },
        "fields": [
            {
                "name": "<field1Name>",
                "type": "<field1Type>",
                "alias": "<field1Alias>",
                "length": "<field1Length>" //length is included only for esriFieldTypeString
            },
            {
                "name": "<field2Name>",
                "type": "<field2Type>",
                "alias": "<field2Alias>",
                "length": "<field2Length>"
            }
        ],
        "features": [
            {
                "geometry": {
                    "paths": [
                        [
                            [
                                <x11>,
                                <y11>
                            ],
                            [
                                <x12>,
                                <y12>
                            ]
                        ],
                        [
                            [
                                <x21>,
                                <y21>
                            ],
                            [
                                <x22>,
                                <y22>
                            ]
                        ]
                    ]
                },
                "attributes": {
                    "<field1>": <value11>,
                    "<field2>": <value12>
                }
            },
            {
                "geometry": {
                    "paths": [
                        [
                            [
                                <x11>,
                                <y11>
                            ],
                            [
                                <x12>,
                                <y12>
                            ]
                        ],
                        [
                            [
                                <x21>,
                                <y21>
                            ],
                            [
                                <x22>,
                                <y22>
                            ]
                        ]
                    ]
                },
                "attributes": {
                    "<field1>": <value21>,
                    "<field2>": <value22>
                }
            }
        ],
        "exceededTransferLimit": <true|false>
    }
}

The following shows an example of the output_routes parameter.

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
    "paramName": "Output_Routes",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
    "fields": [
            {
                "name": "OID",
                "type": "esriFieldTypeOID",
                "alias": "OID"
            },
            {
                "name": "Name",
                "type": "esriFieldTypeString",
                "alias": "Name",
                "length": 260
            },
            {
                "name": "StopCount",
                "type": "esriFieldTypeInteger",
                "alias": "StopCount",
                "domain": {
                    "type": "range",
                    "name": "StopCount",
                    "range": [
                        0,
                        2147483647
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "Total_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Total_Minutes"
            },
            {
                "name": "Total_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Total_Kilometers"
            },
            {
                "name": "FirstStopOID",
                "type": "esriFieldTypeInteger",
                "alias": "FirstStopOID"
            },
            {
                "name": "LastStopOID",
                "type": "esriFieldTypeInteger",
                "alias": "LastStopOID"
            },
            {
                "name": "Total_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Total_Miles"
            },
            {
                "name": "Shape_Length",
                "type": "esriFieldTypeDouble",
                "alias": "Shape_Length"
            }
        ],
        "features": [
            {
                "attributes": {
                    "OID": 1,
                    "Name": "Stop1 - Stop2",
                    "StopCount": 2,
                    "Total_Minutes": 14.296418563584401,
                    "Total_Kilometers": 8.6253749504299684,
                    "FirstStopOID": 1,
                    "LastStopOID": 2,
                    "Total_Miles": 5.3595600000000001,
                    "Shape_Length": 0.08518273838097945
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.06591391900008,
                                -37.864739829999962
                            ],
                            [
                                145.0671000000001,
                                -37.865289999999959
                            ],
                        ....
                        .... additional points in the route part
                        .... 
                        ]
                    ]
                }
            },
            {
                "attributes": {
                    "OID": 2,
                    "Name": "Stop3 - Stop4",
                    "StopCount": 2,
                    "Total_Minutes": 16.896418563584401,
                    "Total_Kilometers": 15.9853749504299684,
                    "FirstStopOID": 3,
                    "LastStopOID": 4,
                    "Total_Miles": 9.9895600000000001,
                    "Shape_Length": 0.08590273838097945
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.496098061475,
                                -37.75135883264409
                            ],
                            [
                                145.45440000035967,
                                -37.75123999982617
                            ],
						                  ....
                        .... additional points in the route part
                        .... 
                            
                        ]
                    ]
                }
            }
        ],
        "exceededTransferLimit": false
    }
}

output_directions

This provides access to the turn-by-turn directions for each resulting route.

The directions_language, directions_distance_units, and directions_style_name parameters highly influence the driving directions. The features are empty if the populate_directions parameter is false.

The following table lists the fields that are returned for output directions:

FieldDescription

RouteName

The name of the route to which the driving action applies. This value is the same as the Name field of the output routes.

ArriveTime

The time of day to initiate the given driving action. If the route spans multiple days, the date and time of day are displayed.

Type

The type of maneuver that the directions feature represents or the type of the directions text. To determine whether Type refers to a maneuver type or a directions string type, check the value of the SubItemType field.

Type can be used, for example, to assign an icon for direction text based on the maneuver type, or it can use a formatting style based on the directions string type when displaying the driving directions in your application.

The Type value is an integer from the Maneuver Types or Directions String Types lists below.

Maneuver Types

  • 0: Unknown
  • 1: Arrive at Stop
  • 2: Go straight
  • 3: Bear left
  • 4: Bear right
  • 5: Turn left
  • 6: Turn right
  • 7: Make sharp left
  • 8: Make sharp right
  • 9: Make U-turn
  • 10: Take ferry
  • 11: Take roundabout
  • 12: Merge to highway
  • 13: Exit highway
  • 14: Go on another highway
  • 15: At fork keep center
  • 16: At fork keep left
  • 17: At fork keep right
  • 18: Depart stop
  • 19: Trip planning item
  • 20: End of ferry
  • 21: Ramp right
  • 22: Ramp left
  • 23: Turn left and immediately turn right
  • 24: Turn right and immediately turn left
  • 25: Turn right and immediately turn right
  • 26: Turn left and immediately turn left

Directions String Types

  • 0: General directions string type
  • 1: Depart directions string type
  • 2: Arrive directions string type
  • 3: Length directions string type
  • 4: Time directions string type
  • 5: Time summary directions string type
  • 6: Time Window directions string type
  • 7: Violation Time directions string type
  • 8: Wait Time directions string type
  • 9: Service Time directions string type
  • 10: Estimated Arrival Time directions string type
  • 11: Cumulative Length directions string type
  • 12: Street name directions string type
  • 13: Alternate street name directions string type
  • 14: Sign branch information directions string type
  • 15: Sign toward information directions string type
  • 16: Cross street name directions string type
  • 17: Sign exit number directions string type

SubItemType

Specifies whether the Type field refers to an integer from the Directions String Types table or the Maneuver Types table.

  • If the SubItemType value is 1, the Type refers to the values from the Maneuver Types table.
  • If the SubItemType value is 2, the Type refers to the values from the Directions String Types table.

Text

A text description of the travel directions.

ElaspsedTime

The time elapsed in minutes from when the current driving direction starts until the next one starts, or until the route ends for the last driving direction.

DriveDistance

The distance from where the current driving direction occurs to where the next one occurs, or to where the route ends for the last driving direction.

The value is in the units specified by the Directions_Distance_Units parameter.

This value is zero for driving directions that occur at the same location where the next one begins. For example, the DriveDistance is 0 for the directions text at the start of the route.

The output_directions parameter is returned as a JSON feature set with following syntax:

Caution:

The service can only return a maximum of 1,000,000 features with the output_directions parameter. If this limit is exceeded, the exceededTransferLimit property is set to true.

{
    "paramName": "Output_Directions",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": <wkid>,
            "latestWkid": <wkid>,
            
        },
        "fields": [
            {
                "name": "<field1Name>",
                "type": "<field1Type>",
                "alias": "<field1Alias>",
                "length": "<field1Length>" //length is included only for esriFieldTypeString
            },
            {
                "name": "<field2Name>",
                "type": "<field2Type>",
                "alias": "<field2Alias>",
                "length": "<field2Length>"
            }
        ],
        "features": [
            {
                "geometry": {
                    "paths": [
                        [
                            [
                                <x11>,
                                <y11>
                            ],
                            [
                                <x12>,
                                <y12>
                            ]
                        ],
                        [
                            [
                                <x21>,
                                <y21>
                            ],
                            [
                                <x22>,
                                <y22>
                            ]
                        ]
                    ]
                },
                "attributes": {
                    "<field1>": <value11>,
                    "<field2>": <value12>
                }
            },
            {
                "geometry": {
                    "paths": [
                        [
                            [
                                <x11>,
                                <y11>
                            ],
                            [
                                <x12>,
                                <y12>
                            ]
                        ],
                        [
                            [
                                <x21>,
                                <y21>
                            ],
                            [
                                <x22>,
                                <y22>
                            ]
                        ]
                    ]
                },
                "attributes": {
                    "<field1>": <value21>,
                    "<field2>": <value22>
                }
            }
        ],
        "exceededTransferLimit": <true|false>
    }
}

The following shows an example of the output_directions parameter:

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
    "paramName": "Output_Directions",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
        "fields": [
            {
                "name": "ObjectID",
                "type": "esriFieldTypeOID",
                "alias": "ObjectID"
            },
            {
                "name": "RouteName",
                "type": "esriFieldTypeString",
                "alias": "RouteName",
                "length": 128
            },
            {
                "name": "ArriveTime",
                "type": "esriFieldTypeDate",
                "alias": "ArriveTime",
                "length": 16
            },
            {
                "name": "Type",
                "type": "esriFieldTypeSmallInteger",
                "alias": "Type"
            },
            {
                "name": "SubItemType",
                "type": "esriFieldTypeSmallInteger",
                "alias": "SubItemType"
            },
            {
                "name": "Text",
                "type": "esriFieldTypeString",
                "alias": "Text",
                "length": 255
            },
            {
                "name": "ElapsedTime",
                "type": "esriFieldTypeSingle",
                "alias": "ElapsedTime"
            },
            {
                "name": "DriveDistance",
                "type": "esriFieldTypeSingle",
                "alias": "DriveDistance"
            },
            {
                "name": "Shape_Length",
                "type": "esriFieldTypeDouble",
                "alias": "Shape_Length"
            }
        ],
        "features": [
            {
                "attributes": {
                    "ObjectID": 1,
                    "RouteName": "Stop1 - Stop2",
                    "ArriveTime": -2209161600000,
                    "Type": 18,
                    "SubItemType": 1,
                    "Text": "Start at Stop1",
                    "ElapsedTime": 0,
                    "DriveDistance": 0,
                    "Shape_Length": 0
                }
            },
            {
                "attributes": {
                    "ObjectID": 2,
                    "RouteName": "Stop1 - Stop2",
                    "ArriveTime": -2209161600000,
                    "Type": 2,
                    "SubItemType": 1,
                    "Text": "Go southeast on Francis Cres toward Albion Rd",
                    "ElapsedTime": 0.3060721,
                    "DriveDistance": 7.480023E-02,
                    "Shape_Length": 0.001307468992936962
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.06591391900008,
                                -37.864739829999962
                            ],
                            [
                                145.0671000000001,
                                -37.865289999999959
                            ],
                            ....
                            .... additional points in the route path
                            .... 
                        ]
                    ]
                }
            },
            ....
			         .... additional directions features 
			         ....
            {
                "attributes": {
                    "ObjectID": 15,
                    "RouteName": "Stop1 - Stop2",
                    "ArriveTime": -2209161600000,
                    "Type": 1,
                    "SubItemType": 1,
                    "Text": "Finish at Stop2, on the left",
                    "ElapsedTime": 0,
                    "DriveDistance": 0,
                    "Shape_Length": 0
                }
            },
            ....
			         .... additional directions features
			         ....
            {
                "attributes": {
                    "ObjectID": 9,
                    "RouteName": "Station 20 - Fire Incident",
                    "ArriveTime": 1365637766665,
                    "Type": 1,
                    "SubItemType": 1,
                    "Text": "Finish at Fire Incident",
                    "ElapsedTime": 0,
                    "DriveDistance": 0,
                    "Shape_Length": 0
                }
            }
        ],
        "exceededTransferLimit": false
    }
}

output_direction_points

Specifies the output turn-by-turn directions for the routes calculated in the analysis, represented as point locations along the routes where specific directions events or maneuvers occur.

Field nameDescription

RouteID

The ObjectID of the output output_routes feature with which this direction point is associated.

Sequence

The sequence of the direction points for the route, starting with 1.

DirectionPointType

The type of directions event or maneuver described by the point, designated by one of the values below.

  • Header (1)
  • Arrive (50)
  • Depart (51)
  • Straight (52)
  • On Ferry (100)
  • Off Ferry (101)
  • Central Fork (102)
  • Roundabout (103)
  • U-Turn (104)
  • Door (150)
  • Stairs (151)
  • Elevator (152)
  • Escalator (153)
  • Pedestrian Ramp (154)
  • Left Fork (200)
  • Left Ramp (201)
  • Clockwise Roundabout (202)
  • Left-handed U-turn (203)
  • Bear left (204)
  • Left Turn (205)
  • Sharp Left (206)
  • Left Turn and immediate Left Turn (207)
  • Left Turn and immediate Right Turn (208)
  • Right Fork (300)
  • Right Ramp (301)
  • Counter-Clockwise Roundabout (302)
  • Right-handed U-turn (303)
  • Bear right (304)
  • Right Turn (305)
  • Sharp Right (306)
  • Right Turn and immediate Left Turn (307)
  • Right Turn and immediate Right Turn (308)
  • Up Elevator (400)
  • Up Escalator (401)
  • Up Stairs (402)
  • Down Elevator (500)
  • Down Escalator (501)
  • Down stairs (502)
  • General Event (1000)
  • Landmark (1001)
  • Time Zone Change (1002)
  • Traffic Event (1003)
  • Scaled Cost Barrier Event (1004)
  • Boundary Crossing (1005)
  • Restriction Violation (1006)

StopID

The ObjectID of the stop with which this direction point is associated, if any. If the point does not represent a visit to a stop, the value is null.

DisplayText

The directions text to display in the consuming application.

ArrivalTime

The time when the directions event happens in coordinated universal time (UTC).

ArrivalUTCOffset

The difference in minutes between the local time at the maneuver location and UTC time shown in the ArrivalTime field, in minutes.

Name

The name of the directions point.

ExitName

The highway exit name that appears in the directions instruction.

AlternateName

Alternate source name that appears in the directions instruction.

IntersectingName

The name of the intersecting or cross street that appears in the directions instruction.

BranchName

The signpost branch name that appears in the directions instruction.

TowardName

The signpost toward destination name that appears in the directions instruction.

Level

The building level at which this directions event occurs. This value corresponds to the Level property defined in the network dataset used for the analysis.

ShortVoiceInstruction

Short text to use as voice guidance text in the consuming application.

VoiceInstruction

Fill text, including expanded abbreviations and plurals, to use as voice guidance text in the consuming application.

Azimuth

The bearing in degrees of the vehicle departing this point. Zero indicates north.

Syntax example for output_direction_points

The output_direction_points parameter is returned as a JSON feature set with the following syntax:

{
  "paramName": "output_direction_points",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPoint",
    "spatialReference": {
      "wkid": <wkid>,
      "latestWkid": <wkid>
    },
    "fields": [
      {
        "name": "<field1Name>",
        "type": "<field1Type>",
        "alias": "<field1Alias>",
        "length": "<field1Length>"
      },
      {
        "name": "<field2Name>",
        "type": "<field2Type>",
        "alias": "<field2Alias>",
        "length": "<field2Length>"
      }
    ],
    "features": [
      {
        "attributes": {
          "<field1>": <value11>,
          "<field2>": <value12>
        },
        "geometry": {
          "x": <x11>,
          "y": <y11>
        }
      },
      {
        "attributes": {
          "<field1>": <value21>,
          "<field2>": <value22>
        },
        "geometry": {
          "x": <x21>,
          "y": <y21>
        }
      ],
      "exceededTransferLimit": <true|false>
    }
  }
}

Example for output_direction_points

The following shows an example of the output_direction_points parameter:

{
  "paramName": "output_direction_points",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPoint",
    "spatialReference": {
      "wkid": 4326,
      "latestWkid": 4326
    },
    "fields": [{
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "RouteID",
        "type": "esriFieldTypeInteger",
        "alias": "Route ID"
      },
      {
        "name": "Sequence",
        "type": "esriFieldTypeInteger",
        "alias": "Sequence"
      },
      {
        "name": "DirectionPointType",
        "type": "esriFieldTypeInteger",
        "alias": "Direction Point Type"
      },
      {
        "name": "StopID",
        "type": "esriFieldTypeInteger",
        "alias": "Stop ID"
      },
      {
        "name": "DisplayText",
        "type": "esriFieldTypeString",
        "alias": "Display Text",
        "length": 1024
      },
      {
        "name": "ArrivalTime",
        "type": "esriFieldTypeDate",
        "alias": "Arrival Time"
      },
      {
        "name": "ArrivalUTCOffset",
        "type": "esriFieldTypeDouble",
        "alias": "Arrival Time: Offset from UTC in Minutes"
      },
      {
        "name": "Name",
        "type": "esriFieldTypeString",
        "alias": "Primary Name",
        "length": 1024
      },
      {
        "name": "ExitName",
        "type": "esriFieldTypeString",
        "alias": "Highway Exit Name"
      },
      {
        "name": "AlternateName",
        "type": "esriFieldTypeString",
        "alias": "Alternate Name"
      },
      {
        "name": "IntersectingName",
        "type": "esriFieldTypeString",
        "alias": "Intersecting Name"
      },
      {
        "name": "BranchName",
        "type": "esriFieldTypeString",
        "alias": "Signpost Branch Name"
      },
      {
        "name": "TowardName",
        "type": "esriFieldTypeString",
        "alias": "Signpost Toward Name"
      },
      {
        "name": "Level",
        "type": "esriFieldTypeInteger",
        "alias": "Level"
      },
      {
        "name": "ShortVoiceInstruction",
        "type": "esriFieldTypeString",
        "alias": "Short Voice Instruction",
        "length": 1024
      },
      {
        "name": "VoiceInstruction",
        "type": "esriFieldTypeString",
        "alias": "Voice Instruction",
        "length": 1024
      },
      {
        "name": "Azimuth",
        "type": "esriFieldTypeDouble",
        "alias": "Azimuth"
      }
    ],
    "features": [{
        "attributes": {
          "ObjectID": 1,
          "RouteID": 1,
          "Sequence": 1,
          "DirectionPointType": 51,
          "StopID": 1,
          "DisplayText": "Start at Stop1",
          "ArrivalTime": null,
          "ArrivalUTCOffset": null,
          "Name": "Stop1",
          "ExitName": null,
          "AlternateName": null,
          "IntersectingName": null,
          "BranchName": null,
          "TowardName": null,
          "Level": null,
          "ShortVoiceInstruction": null,
          "VoiceInstruction": null,
          "Azimuth": 0
        },
        "geometry": {
          "x": -116.99007760199999,
          "y": 33.967480587000068
        }
      },
      {
        "attributes": {
          "ObjectID": 2,
          "RouteID": 1,
          "Sequence": 2,
          "DirectionPointType": 52,
          "StopID": null,
          "DisplayText": "Go north on Nancy Ave toward Cherry Valley Blvd",
          "ArrivalTime": null,
          "ArrivalUTCOffset": null,
          "Name": "Nancy Ave",
          "ExitName": null,
          "AlternateName": null,
          "IntersectingName": "",
          "BranchName": null,
          "TowardName": null,
          "Level": null,
          "ShortVoiceInstruction": null,
          "VoiceInstruction": null,
          "Azimuth": 1.7238311767578125
        },
        "geometry": {
          "x": -116.99007760199999,
          "y": 33.967480587000068
        }
      },
      {
        "attributes": {
          "ObjectID": 3,
          "RouteID": 1,
          "Sequence": 3,
          "DirectionPointType": 305,
          "StopID": null,
          "DisplayText": "Turn right on Cherry Valley Blvd",
          "ArrivalTime": null,
          "ArrivalUTCOffset": null,
          "Name": "Cherry Valley Blvd",
          "ExitName": null,
          "AlternateName": null,
          "IntersectingName": null,
          "BranchName": null,
          "TowardName": null,
          "Level": null,
          "ShortVoiceInstruction": null,
          "VoiceInstruction": null,
          "Azimuth": 90
        },
        "geometry": {
          "x": -116.99003999999996,
          "y": 33.96873000000005
        }
      },
      {
        "attributes": {
          "ObjectID": 4,
          "RouteID": 1,
          "Sequence": 4,
          "DirectionPointType": 50,
          "StopID": 2,
          "DisplayText": "Finish at Stop2, on the left",
          "ArrivalTime": null,
          "ArrivalUTCOffset": null,
          "Name": "Stop2",
          "ExitName": null,
          "AlternateName": null,
          "IntersectingName": null,
          "BranchName": null,
          "TowardName": null,
          "Level": null,
          "ShortVoiceInstruction": null,
          "VoiceInstruction": null,
          "Azimuth": 0
        },
        "geometry": {
          "x": -116.98829886599998,
          "y": 33.96873000000005
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

output_direction_lines

Specifies the output route lines calculated in the analysis sliced to represent each route segment between DirectionPoints event or maneuver locations.

Field nameDescription

DirectionPointID

The ObjectID of the feature in the output_direction_points table with which this line is associated.

RouteID

The ObjectID of the output output_routes feature with which this direction line is associated.

DirectionLineType

The type of directions situation described by this line, designated by one of the values below.

  • Unknown (0)
  • Segment (1)
  • Maneuver Segment (2)
  • Restriction violation (3)
  • Scaled Cost Barrier (4)
  • Heavy Traffic (5)
  • Slow Traffic (6)
  • Moderate Traffic (7)

Meters

The length of the line segment measured in meters.

Minutes

The travel time along the line segment in minutes.

FromLevel

The building level at which this directions event begins. This value corresponds to the Level property defined in the network dataset used for the analysis. Learn more about the directions configuration of a network dataset

ToLevel

The building level at which this directions event ends. This value corresponds to the Level property defined in the network dataset used for the analysis.

Syntax example for output_direction_lines

The output_direction_lines parameter is returned as a JSON feature set with the following syntax:

{
  "paramName": "output_direction_lines",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": <wkid>,
      "latestWkid": <wkid>
    },
    "fields": [
      {
        "name": "<field1Name>",
        "type": "<field1Type>",
        "alias": "<field1Alias>",
        "length": "<field1Length>" //length is included only for esriFieldTypeString
      },
      {
        "name": "<field2Name>",
        "type": "<field2Type>",
        "alias": "<field2Alias>",
        "length": "<field2Length>"
      }
    ],
    "features": [
      {
        "attributes": {
          "<field1>": <value11>,
          "<field2>": <value12>
        },
        "geometry": {
          "paths": [
            [
              [
                <x11>,
                <y11>
              ],
              [
                <x12>,
                <y12>
              ]
            ],
            [
              [
                <x21>,
                <y21>
              ],
              [
                <x22>,
                <y22>
              ]
            ]
          ]
        }
      },
      {
        "attributes": {
          "<field1>": <value21>,
          "<field2>": <value22>
        },
        "geometry": {
          "paths": [
            [
              [
                <x11>,
                <y11>
              ],
              [
                <x12>,
                <y12>
              ]
            ],
            [
              [
                <x21>,
                <y21>
              ],
              [
                <x22>,
                <y22>
              ]
            ]
          ]
        }
      }
    ],
    "exceededTransferLimit": <true|false>
  }
}

Example for output_direction_lines

The following shows an example of the output_direction_lines parameter:

{
  "paramName": "output_direction_lines",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": 4326,
      "latestWkid": 4326
    },
    "fields": [{
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "DirectionPointID",
        "type": "esriFieldTypeInteger",
        "alias": "Direction Point ID"
      },
      {
        "name": "RouteID",
        "type": "esriFieldTypeInteger",
        "alias": "Route ID"
      },
      {
        "name": "DirectionLineType",
        "type": "esriFieldTypeInteger",
        "alias": "Direction Line Type"
      },
      {
        "name": "Meters",
        "type": "esriFieldTypeDouble",
        "alias": "Meters"
      },
      {
        "name": "Minutes",
        "type": "esriFieldTypeDouble",
        "alias": "Minutes"
      },
      {
        "name": "FromLevel",
        "type": "esriFieldTypeInteger",
        "alias": "From Level"
      },
      {
        "name": "ToLevel",
        "type": "esriFieldTypeInteger",
        "alias": "To Level"
      },
      {
        "name": "Shape_Length",
        "type": "esriFieldTypeDouble",
        "alias": "Shape_Length"
      }
    ],
    "features": [{
        "attributes": {
          "ObjectID": 1,
          "DirectionPointID": 2,
          "RouteID": 1,
          "DirectionLineType": 1,
          "Meters": 138.63309138928537,
          "Minutes": 0.20794963587952883,
          "FromLevel": null,
          "ToLevel": null,
          "Shape_Length": 0.0012499787017906437
        },
        "geometry": {
          "paths": [
            [
              [
                -116.99007760199999,
                33.967480587000068
              ],
              [
                -116.99003999999996,
                33.96873000000005
              ]
            ]
          ]
        }
      },
      {
        "attributes": {
          "ObjectID": 2,
          "DirectionPointID": 3,
          "RouteID": 1,
          "DirectionLineType": 1,
          "Meters": 160.91529151117024,
          "Minutes": 0.14887344090869106,
          "FromLevel": null,
          "ToLevel": null,
          "Shape_Length": 0.0017411339999853226
        },
        "geometry": {
          "paths": [
            [
              [
                -116.99003999999996,
                33.96873000000005
              ],
              [
                -116.98971999999998,
                33.96873000000005
              ],
              [
                -116.98903999999999,
                33.96873000000005
              ],
              [
                -116.98829886599998,
                33.96873000000005
              ]
            ]
          ]
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

output_stops

This provides access to the attributes of the stops that are visited by the routes as well as stops that cannot be reached by any of the routes.

The following table list the fields returned for output stops. In addition to these fields, the parameter also includes all the fields from the input feature class used as stops for the analysis.

FieldDescription

Name

The name of the stop visited by the route. The values for this field are copied from the Name field on the input stops.

RouteName

The name of the route to which the stop is assigned.

Input stops that have the same route name at the time the tool runs are grouped together and visited by one route, and the route is assigned that name. When more than one route name is present on the input stops, the tool can output multiple routes—one for each unique route name.

If no name is present, all the stops belong to the same route.

Sequence

The order in which the stops are visited by the assigned route, which is listed in the RouteName field.

TimeWindowStart

The earliest time the route can visit the stop. The values for this field are copied from the TimeWindowStart field on the input stops.

TimeWindowEnd

The latest time the route can visit the stop. The values for this field are copied from the TimeWindowEnd field on the input stops.

ArriveCurbApproach

The side of the vehicle the curb is on when arriving at the stop.

DepartCurbApproach

The side of the vehicle the curb is on when departing from the stop.

ArriveTime

The date and time value indicating the arrival time at the stop. The time zone for this time-of-day value is taken from the network element on which the stop is located.

DepartTime

The date and time value indicating the departure time from the stop. The time zone for this time-of-day value is taken from the network element on which the stop is located.

ArriveTimeUTC

The date and time value indicating the arrival time at the stop. The time zone for this time-of-day value is taken from the network element on which the stop is located.

DepartTimeUTC

The date and time value indicating the departure time in coordinated universal time (UTC)

LocationType

The stop type. The values for this field are copied from the LocationType field on the input stops.

SourceID

The numeric identifier of the network dataset source feature class on which the input point is located.

SourceOID

The ObjectID of the feature in the source on which the input point is located.

PosAlong

The position along the digitized direction of the source line feature. This value is stored as a ratio. This field is null if the network location references a junction.

SideOfEdge

The side of the edge in relation to the digitized direction of the line feature. This field is limited to a domain of two values: Right Side (1) and Left Side (2).

CurbApproach

The direction a vehicle may arrive at and depart from the stop. The values for this field are copied from the CurbApproach field on the input stops.

Status

Indicates how the stop was evaluated in the analysis. The field can be used to determine which stops were not assigned to any routes. The possible values are the following:

  • 0 (OK)—The stop was successfully located on the transportation network and analyzed.
  • 1 (Not Located)—The stop was not included in the analysis since a traversable road was not found within the maximum search distance from the stop.
  • 3 (Elements not traversable)—The network element that the stop is on is not traversable. This can occur when the network element is restricted by a restriction attribute.
  • 4 (Invalid Field Values)—Field values fall outside a range or coded-value domain. For example, a negative number may exist where positive numbers are required.
  • 5 (Not Reached)—The stop couldn't be reached due to constraints; for example, a curb approach is set so that a vehicle must travel in the wrong direction on a one-way street to reach the stop.
  • 6 (Time window violation)—Time windows on the stop cannot be reached on time; the route arrives early or late.
  • 7 (Not located on closest)—The closest network location to the stop is not traversable because of a restriction or barrier, so the stop has been located on the closest traversable network feature instead.

SnapX

The x-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset.

SnapY

The y-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset.

SnapZ

The z-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. The SnapZ field is 0 if the network is two dimensional.

DistanceToNetworkInMeters

The distance in meters between the point's geographic location and the position where it was located on the network.

AdditionalTime

The amount of time added to the total route time when this stop is visited. The values for this field are copied from the AdditionalTime field on the input stops.

AdditionalDistance

The amount of distance added to the total route distance when this stop is visited. The values for this field are copied from the AdditionalDistance field on the input stops.

AdditionalCost

The cost added to the total route cost when this stop is visited. The values for this field are copied from the AdditionalCost field on the input stops. This field is included only when the travel mode used for the analysis has an impedance attribute that is neither time based nor distance based.

The cost added to the total route cost when this stop is visited. The values for this field are copied from the AdditionalCost field on input stops. This field is included only when the travel mode used for the analysis has an impedance attribute that is neither time-based nor distance-based.

Cumul_Minutes

The cumulative duration of the route in minutes from the origin to and including the stop. The value reported here is the cumulative route time to the stop, including any additional time at the stop and at any previous stops.

For example, if a route analysis determines that it takes 10 minutes to visit two stops, and the second stop has an AdditionalTime value of 5, the Cumul_Minutes value will be 15 minutes.

Note:

An additional field Cumul_[TimeUnits] is included if the timeUnits property of the analysis object is not set to TimeUnits.Minutes. The field values are in the units specified by the timeUnits property.

Note:

Additional fieldsCumul_[AccumulateAttributeName]_[TimeUnits] are included for each time-based cost attribute that is accumulated during the analysis.

Cumul_Miles

The cumulative distance of the route in miles from the origin to and including the stop. The value reported here is the cumulative route distance to the stop, including any additional distance at the stop and at any previous stops.

Note:

An additional field Cumul_[DistanceUnits] is included if the distanceUnits property of the analysis object is not set to DistanceUnits.Miles or DistanceUnits.Kilometers. The field values are in the units specified by the distanceUnits property.

Note:

Additional fieldsCumul_[AccumulateAttributeName]_[DistanceUnits] are included for each distance-based cost attribute that is accumulated during the analysis.

Cumul_Kilometers

The cumulative distance of the route in kilometers from the origin to and including the stop. The value reported here is the cumulative route distance to the stop, including any additional distance at the stop and at any previous stops.

Cumul_Cost

The cumulative cost of the route from the origin to and including the stop. The value reported here is the cumulative route cost to the stop, including any additional cost at the stop and at any previous stops. This field is included only when the travel mode used for the analysis has an impedance attribute that is neither time based nor distance based. The value is in unknown units.

Note:

Additional fieldsCumul_[AccumulateAttributeName]_Other are included for each cost attribute that is neither time-based nor distance-based and accumulated during the analysis.

Wait_Minutes

This field stores the time spent waiting for the time window to open when the route arrives early at the stop.

The field has a null value if time windows are not used in the analysis.

Note:

An additional field Wait_[TimeUnits] is included if the timeUnits property of the analysis object is not set to TimeUnits.Minutes. The field values are in the units specified by the timeUnits property.

Note:

Additional fieldsWait_[AccumulateAttributeName]_[TimeUnits] are included for each time-based cost attribute that is accumulated during the analysis.

CumulWait_Minutes

This field stores the sum of how much time has been spent waiting for time windows to open. It measures idle time. It includes the wait time from the current stop and all previous stops visited by the route.

The field has a null value if time windows are not used in the analysis.

Note:

An additional field CumulWait_[TimeUnits] is included if the timeUnits property of the analysis object is not set to TimeUnits.Minutes. The field values are in the units specified by the timeUnits property.

Additional fieldsCumulWait_[AccumulateAttributeName]_[TimeUnits] are included for each time-based cost attribute that is accumulated during the analysis.

Violation_Minutes

This field is a measure of how late the route arrived after the time window closed. Specifically, it stores the amount of time between the end of the time window and when the route arrived at the stop.

The field has a null value if time windows are not used in the analysis.

Note:

An additional field Violation_[TimeUnits] is included if the timeUnits property of the analysis object is not set to TimeUnits.Minutes. The field values are in the units specified by the timeUnits property.

Additional fieldsViolation_[AccumulateAttributeName]_[TimeUnits] are included for each time-based cost attribute that is accumulated during the analysis.

CumulViolation_Minutes

This field stores the cumulative violation time from the current stop and all previous stops visited by the route.

The field has a null value if time windows are not used in the analysis.

Note:

An additional field CumulViolation_[TimeUnits] is included if the timeUnits property of the analysis object is not set to TimeUnits.Minutes. The field values are in the units specified by the timeUnits property.

Additional fieldsCumulViolation_[AccumulateAttributeName]_[TimeUnits] are included for each time-based cost attribute that is accumulated during the analysis.

ORIG_FID

The ObjectID of the input stop. This field can be used to join attributes from the output stops to the input stops or from the input stops to the output stops.

Bearing

The values for this field are copied from the Bearing field on the input stops.

BearingTol

The values for this field are copied from the BearingTol field on the input stops.

NavLatency

The values for this field are copied from the NavLatency field on the input stops.

The output_stops parameter is returned as a JSON feature set with following syntax:

{
    "paramName": "Output_Stops",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPoint",
        "spatialReference": {
            "wkid": <wkid>,
            "latestWkid": <wkid>
        },
        "fields": [
            {
                "name": "<field1Name>",
                "type": "<field1Type>",
                "alias": "<field1Alias>""length": "<field1Length>"
            },
            {
                "name": "<field2Name>",
                "type": "<field2Type>",
                "alias": "<field2Alias>""length": "<field2Length>"
            }
        ],
        "features": [
            {
                "attributes": {
                    "<field1>": <value11>,
                    "<field2>;": <value12>;
                }"geometry": {
                    "x": <x11>,
                    "y": <y11>
                }
            },
            {
                "attributes": {
                    "<field1>": <value21>,
                    "<field2>;": <value22>;
                }"geometry": {
                    "x": <x21>,
                    "y": <y21>
                }
            ],
            "exceededTransferLimit": <true|false>
        }
    }
}

The following shows an example of the output_stops parameter.

{
    "paramName": "Output_Stops",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPoint",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
        "fields": [
            {
                "name": "OID",
                "type": "esriFieldTypeOID",
                "alias": "OID"
            },
            {
                "name": "Name",
                "type": "esriFieldTypeString",
                "alias": "Name",
                "length": 128
            },
            {
                "name": "RouteName",
                "type": "esriFieldTypeString",
                "alias": "RouteName",
                "length": 128
            },
            {
                "name": "Sequence",
                "type": "esriFieldTypeInteger",
                "alias": "Sequence",
                "domain": {
                    "type": "range",
                    "name": "Sequence",
                    "range": [
                        1,
                        2147483647
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "TimeWindowStart",
                "type": "esriFieldTypeDate",
                "alias": "TimeWindowStart",
                "length": 16
            },
            {
                "name": "TimeWindowEnd",
                "type": "esriFieldTypeDate",
                "alias": "TimeWindowEnd",
                "length": 16
            },
            {
                "name": "ArriveCurbApproach",
                "type": "esriFieldTypeInteger",
                "alias": "ArriveCurbApproach",
                "domain": {
                    "type": "codedValue",
                    "name": "NACurbApproach",
                    "codedValues": [
                        {
                            "name": "Either side of vehicle",
                            "code": 0
                        },
                        {
                            "name": "Right side of vehicle",
                            "code": 1
                        },
                        {
                            "name": "Left side of vehicle",
                            "code": 2
                        },
                        {
                            "name": "No U-turn",
                            "code": 3
                        }
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "DepartCurbApproach",
                "type": "esriFieldTypeInteger",
                "alias": "DepartCurbApproach",
                "domain": {
                    "type": "codedValue",
                    "name": "NACurbApproach",
                    "codedValues": [
                        {
                            "name": "Either side of vehicle",
                            "code": 0
                        },
                        {
                            "name": "Right side of vehicle",
                            "code": 1
                        },
                        {
                            "name": "Left side of vehicle",
                            "code": 2
                        },
                        {
                            "name": "No U-turn",
                            "code": 3
                        }
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "LocationType",
                "type": "esriFieldTypeInteger",
                "alias": "LocationType",
                "domain": {
                    "type": "codedValue",
                    "name": "NALocationType",
                    "codedValues": [
                        {
                            "name": "Stop",
                            "code": 0
                        },
                        {
                            "name": "Waypoint",
                            "code": 1
                        },
                        {
                            "name": "Break",
                            "code": 2
                        }
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "CurbApproach",
                "type": "esriFieldTypeInteger",
                "alias": "CurbApproach",
                "domain": {
                    "type": "codedValue",
                    "name": "NACurbApproach",
                    "codedValues": [
                        {
                            "name": "Either side of vehicle",
                            "code": 0
                        },
                        {
                            "name": "Right side of vehicle",
                            "code": 1
                        },
                        {
                            "name": "Left side of vehicle",
                            "code": 2
                        },
                        {
                            "name": "No U-turn",
                            "code": 3
                        }
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "Status",
                "type": "esriFieldTypeInteger",
                "alias": "Status",
                "domain": {
                    "type": "codedValue",
                    "name": "NALocationStatus",
                    "codedValues": [
                        {
                            "name": "OK",
                            "code": 0
                        },
                        {
                            "name": "Not located",
                            "code": 1
                        },
                        {
                            "name": "Network element not located",
                            "code": 2
                        },
                        {
                            "name": "Element not traversable",
                            "code": 3
                        },
                        {
                            "name": "Invalid field values",
                            "code": 4
                        },
                        {
                            "name": "Not reached",
                            "code": 5
                        },
                        {
                            "name": "Time window violation",
                            "code": 6
                        }
                    ],
                    "mergePolicy": "esriMPTDefaultValue",
                    "splitPolicy": "esriSPTDefaultValue"
                }
            },
            {
                "name": "AdditionalTime",
                "type": "esriFieldTypeDouble",
                "alias": "AdditionalTime"
            },
            {
                "name": "Cumul_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Minutes"
            },
            {
                "name": "Cumul_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Kilometers"
            },
            {
                "name": "ORIG_FID",
                "type": "esriFieldTypeInteger",
                "alias": "ORIG_FID"
            },
            {
                "name": "Cumul_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Miles"
            }
        ],
        "features": [
            {
                "attributes": {
                    "OID": 1,
                    "Name": "Stop1",
                    "RouteName": null,
                    "Sequence": 1,
                    "TimeWindowStart": null,
                    "TimeWindowEnd": null,
                    "ArriveCurbApproach": null,
                    "DepartCurbApproach": 1,
                    "LocationType": 0,
                    "CurbApproach": 0,
                    "Status": 0,
                    "AdditionalTime": 0,
                    "Cumul_Minutes": 0,
                    "Cumul_Kilometers": 0,
                    "ORIG_FID": 1,
                    "Cumul_Miles": 0
                },
                "geometry": {
                    "x": 145.06573064800011,
                    "y": -37.865134933999968
                }
            },
            {
                "attributes": {
                     "OID": 2,
                    "Name": "Stop2",
                    "RouteName": null,
                    "Sequence": 2,
                    "TimeWindowStart": null,
                    "TimeWindowEnd": null,
                    "ArriveCurbApproach": 2,
                    "DepartCurbApproach": null,
                    "LocationType": 0,
                    "CurbApproach": 0,
                    "Status": 0,
                    "AdditionalTime": 0,
                    "Cumul_Minutes": 14.296418563584401,
                    "Cumul_Kilometers": 8.6253749504299684,
                    "ORIG_FID": 2,
                    "Cumul_Miles": 5.3595600000000001
                },
                "geometry": {
                    "x": 145.10495676700009,
                    "y": -37.81866925199995
                }
            }
        ],
        "exceededTransferLimit": false
    }
}

output_route_edges

This provides access to the individual network edges along which the routes travel.

This parameter has value only when the populate_route_edges parameter is set to True.

The following table lists the fields supported by the output route edges:

FieldDescription

SourceName

The name of the edge source feature class from which the line was generated.

SourceOID

The ObjectID of the traversed street feature. Summarizing the values for this field can provide useful information such as the number of times a particular street feature is included in all the routes.

RouteEdgeID

The ID representing the edge that comprises the street feature. Since there can be more than one edge per street feature, the SourceOID field can be used to uniquely identify the traversed street feature, and the RouteEdgeID field can be used to uniquely identify the edge within the traversed street feature.

FromPosition

Specifies where the output RouteEdges feature begins in reference to the digitized direction of the underlying street feature.

  • A value of 0 (zero) indicates that the line begins at the from point of the underlying street feature.
  • A value of 1 indicates that the line begins at the to point of the street feature.
  • A value between 0 and 1 indicates that the line begins at a point along the underlying street feature; for example, a value of 0.25 means the line begins 25 percent along the digitized direction of the underlying street feature.

ToPosition

Specifies where the output RouteEdges feature ends in reference to the digitized direction of the underlying street feature.

  • A value of 0 (zero) indicates that the line ends at the from point of the underlying street feature.
  • A value of 1 indicates that the line ends at the to point of the street feature.
  • A value between 0 and 1 indicates that the line ends at a point along the underlying street feature; for example, a value of 0.25 means the line ends 25 percent along the digitized direction of the underlying street feature.

RouteID

Uniquely identifies the route that traversed the edge.

The RouteID value corresponds to an ObjectID value from the output routes.

Attr_Minutes

The travel time in minutes of the traversed portion of the underlying street feature.

Note:

An additional field, Attr_[TimeUnits], is included if the measurement_units parameter is time based and its value is not set to Minutes. The field values are in the units specified by the measurement_units parameter.

Attr_Miles

The length in miles of the traversed portion of the underlying street feature.

Note:

An additional field, Attr_[DistanceUnits], is included if the measurement_units parameter is distance based and its value is not Miles or Kilometers. The field values are in the units specified by the measurement_units parameter.

Attr_Kilometers

The length in kilometers of the traversed portion of the underlying street feature.

Attr_Other

The travel cost of the traversed portion of the underlying street feature. This field is included only when the travel mode used for the analysis has an impedance attribute that is neither time based nor distance based. The value is in unknown units.

Note:

Additional fields, Attr_[AccumulateAttributeName], are included for each cost attribute that is neither time based nor distance based and accumulated during the analysis.

Cumul_Minutes

The travel time in minutes of the route from its origin to the end of the traversed portion of this underlying street feature.

Note:

An additional field, Cumul_[TimeUnits], is included if the measurement_units parameter is time based and its value is not set to Minutes. The field values are in the units specified by the measurement_units parameter.

Note:

Additional fields, Cumul_[AccumulateAttributeName], are included for each time-based cost attribute that is accumulated during the analysis. The values are in the time units used for the analysis.

Cumul_Miles

The length in miles of the route from its origin to the end of the traversed portion of this underlying street feature.

Note:

An additional field, Cumul_[DistanceUnits], is included if the measurement_units parameter is distance based and its value is not Miles or Kilometers. The field values are in the units specified by the measurement_units parameter.

Note:

Additional fields, Cumul_[AccumulateAttributeName], are included for each distance-based cost attribute that is accumulated during the analysis. The values are in the distance units used for the analysis.

Cumul_Kilometers

The length in kilometers of the route from its origin to the end of the traversed portion of this underlying street feature.

Cumul_Other

The travel cost of the route from its origin to the end of the traversed portion of this underlying street feature. This field is included only when the travel mode used for the analysis has an impedance attribute that is neither time based nor distance based. The value is in unknown units.

Note:

Additional fields, Cumul_[AccumulateAttributeName], are included for each cost attribute that is neither time based nor distance based and accumulated during the analysis.

Attr_[Soft Restriction Attribute Name]

Specifies whether the traversed edge used the soft restriction attribute referred to in this field's name.

  • 0—The traversed edge didn't use the soft restriction.
  • 1—The traversed edge used the soft restriction.

For example, if the analysis was performed using the soft restriction called Avoid Toll Roads, a field called Attr_Avoid_Toll_Roads is created for this soft restriction. A value of 1 for this field would represent the toll roads in the route.

The output_route_edges parameter is returned as a JSON feature set with following syntax:

Caution:

The service can only return a maximum of 1,000,000 features with the output_route_edges parameter. If this limit is exceeded, the exceededTransferLimit property is set to true.

{
    "paramName": "Output_Routes_Edges",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": <wkid>,
            "latestWkid": <wkid>,
            
        },
        "fields": [
            {
                "name": "<field1Name>",
                "type": "<field1Type>",
                "alias": "<field1Alias>",
                "length": "<field1Length>" //length is included only for esriFieldTypeString
            },
            {
                "name": "<field2Name>",
                "type": "<field2Type>",
                "alias": "<field2Alias>",
                "length": "<field2Length>"
            }
        ],
        "features": [
            {
                "geometry": {
                    "paths": [
                        [
                            [
                                <x11>,
                                <y11>
                            ],
                            [
                                <x12>,
                                <y12>
                            ]
                        ],
                        [
                            [
                                <x21>,
                                <y21>
                            ],
                            [
                                <x22>,
                                <y22>
                            ]
                        ]
                    ]
                },
                "attributes": {
                    "<field1>": <value11>,
                    "<field2>": <value12>
                }
            },
            {
                "geometry": {
                    "paths": [
                        [
                            [
                                <x11>,
                                <y11>
                            ],
                            [
                                <x12>,
                                <y12>
                            ]
                        ],
                        [
                            [
                                <x21>,
                                <y21>
                            ],
                            [
                                <x22>,
                                <y22>
                            ]
                        ]
                    ]
                },
                "attributes": {
                    "<field1>": <value21>,
                    "<field2>": <value22>
                }
            }
        ],
        "exceededTransferLimit": <true|false>
    }
}

The following shows an example of the output_route_edges parameter.

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
    "paramName": "Output_Route_Edges",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
    "fields": [
            {
                "name": "ObjectID",
                "type": "esriFieldTypeOID",
                "alias": "ObjectID"
            },
            {
                "name": "SourceName",
                "type": "esriFieldTypeString",
                "alias": "SourceName",
                "length": 255
            },
            {
                "name": "SourceOID",
                "type": "esriFieldTypeInteger",
                "alias": "SourceOID"
            },
            {
                "name": "RouteEdgeID",
                "type": "esriFieldTypeInteger",
                "alias": "RouteEdgeID"
            },
            {
                "name": "FromPosition",
                "type": "esriFieldTypeDouble",
                "alias": "FromPosition"
            },
            {
                "name": "ToPosition",
                "type": "esriFieldTypeDouble",
                "alias": "ToPosition"
            },
            {
                "name": "RouteID",
                "type": "esriFieldTypeInteger",
                "alias": "RouteID"
            },
            {
                "name": "Attr_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Attr_Minutes"
            },
            {
                "name": "Cumul_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Minutes"
            },
            {
                "name": "Attr_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Attr_Kilometers"
            },
            {
                "name": "Cumul_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Kilometers"
            },
            {
                "name": "Attr_Avoid_Unpaved_Roads",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Avoid Unpaved Roads"
            },
            {
                "name": "Attr_Avoid_Private_Roads",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Avoid Private Roads"
            },
            {
                "name": "Attr_Avoid_Gates",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Avoid Gates"
            },
            {
                "name": "Attr_Through_Traffic_Prohibited",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Through Traffic Prohibited"
            },
            {
                "name": "Attr_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Attr_Miles"
            },
            {
                "name": "Cumul_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Miles"
            },
            {
                "name": "Shape_Length",
                "type": "esriFieldTypeDouble",
                "alias": "Shape_Length"
            }
        ],
        "features": [
            {
                "attributes": {
                    "ObjectID": 1,
                    "SourceName": "Routing_Streets",
                    "SourceOID": 28553595,
                    "RouteEdgeID": 33578310,
                    "FromPosition": 0.53935587127584417,
                    "ToPosition": 0,
                    "RouteID": 1,
                    "Attr_Minutes": 0.30607205176400221,
                    "Cumul_Minutes": 0.30607205176400221,
                    "Attr_Kilometers": 0.12037825998265438,
                    "Cumul_Kilometers": 0.12037825998265438,
                    "Attr_Avoid_Unpaved_Roads": 0,
                    "Attr_Avoid_Private_Roads": 0,
                    "Attr_Avoid_Gates": 0,
                    "Attr_Through_Traffic_Prohibited": 0,
                    "Attr_Miles": 0.074800000000000005,
                    "Cumul_Miles": 0.074800000000000005,
                    "Shape_Length": 0.001307468992936962
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.06591391900008,
                                -37.864739829999962
                            ],
                            [
                                145.0671000000001,
                                -37.865289999999959
                            ]
                        ....
                        .... additional points in the route part
                        .... 
                        ]
                    ]
                }
            },
            {
                "attributes": {
                    "ObjectID": 2,
                    "SourceName": "Routing_Streets",
                    "SourceOID": 28553594,
                    "RouteEdgeID": 33578307,
                    "FromPosition": 0.78894821574891705,
                    "ToPosition": 0.65663679210329906,
                    "RouteID": 1,
                    "Attr_Minutes": 0.14121413009703704,
                    "Cumul_Minutes": 0.44728618186103924,
                    "Attr_Kilometers": 0.079332016796953356,
                    "Cumul_Kilometers": 0.19971027677960773,
                    "Attr_Avoid_Unpaved_Roads": 0,
                    "Attr_Avoid_Private_Roads": 0,
                    "Attr_Avoid_Gates": 0,
                    "Attr_Through_Traffic_Prohibited": 0,
                    "Attr_Miles": 0.04929,
                    "Cumul_Miles": 0.12409000000000001,
                    "Shape_Length": 0.00076609398903347678
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.0671000000001,
                                -37.865289999999959
                            ],
                            [
                                145.0666500000001,
                                -37.864669999999933
                            ],
						                  ....
                        .... additional points in the route part
                        .... 
                            
                        ]
                    ]
                }
            }
        ],
        "exceededTransferLimit": false
    }
}

solve_succeeded

Use this parameter to determine if the service was able to find the routes successfully. The error messages for the failure can be obtained by making a request to get the status of the job.

The solve_succeeded parameter is returned as a JSON feature set with following syntax:

{
    "paramName": "Solve_Succeeded",
    "dataType": "GPBoolean",
    "value": <true | false>
}

The following shows an example of the solve_succeeded parameter:

{
    "paramName": "Solve_Succeeded",
    "dataType": "GPBoolean",
    "value": true
}

output_route_data

Use this parameter to access a .zip file that contains a file geodatabase containing the inputs and outputs of the analysis in a format that can be used to share route layers with ArcGIS Online or Portal for ArcGIS. The parameter value is populated only when the Save Route Data parameter is set to True.

output_result_file

Use this parameter to access the results from the analysis as a .zip file containing one or more files for each output. The format of the individual file is specified by the Output Format parameter. The parameter value is not populated when the Output Format parameter is set to Feature Set.

output_network_analysis_layer

Use this parameter to access the network analysis layer file that stores the analysis settings and the inputs and outputs used for the analysis. The parameter value is populated only when the Save Output Network Analysis Layer parameter is set to True.

Usage limits

The table below lists the limits that apply to the asynchronous route operation.

Overrides

Limit DescriptionLimit Value

Maximum number of stops:

10,000

Maximum number of stops per route:

150

Maximum number of (point) barriers:

250

Maximum number of street features intersected by polyline barriers:

500

Maximum number of street features intersected by polygon barriers:

2,000

Maximum straight-line distance for the walking travel mode:

(If the straight-line distance between any two stops is greater than this limit, the analysis will fail when the walking option for travel_mode is chosen.)

27 miles (43.45 kilometers)

Force hierarchy beyond a straight-line distance of:

(If the straight-line distance between any two stops is greater than the limit shown here, the analysis uses hierarchy, even if useHierarchy is set to false.)

50 miles (80.46 kilometers)

Maximum snap tolerance:

(If the distance between an input point and its nearest traversable street is greater than the distance specified here, the point is excluded from the analysis.)

12.42 miles (20 kilometers)

Maximum time a client can use this route service:

1 hour (3,600 seconds)

Maximum number of directions features that can be returned:

1,000,000

Maximum number of route edges that can be returned:

1,000,000

Examples

Note:

If you copy and paste the request URL from the examples into a web browser, you will get an invalid token error message. You need to replace <yourToken> with a valid token. Learn how to generate one.

Routing between two points

This example demonstrates routing between two points in Melbourne, Australia.

Request URL to submit the job

The first request is to submit a job that returns the job ID.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/submitJob?stops={"features":[{"attributes":{"Name":"Stop1"},"geometry":{"x":145.0657306480001,"y":-37.86513493399997}},{"attributes":{"Name":"Stop2"},"geometry":{"x":145.1049567670001,"y":-37.81866925199995}}]}&f=json&token=<yourToken>

JSON response

{
    "jobId": "jd6f6b61f07654f5aa5ef1b2392384e67",
    "jobStatus": "esriJobSubmitted"
}

Request URL to query job status

The job ID obtained from the response of the first request can be queried periodically to determine the status of the job.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>?returnMessages=true&f=json&token=<yourToken>

JSON response

{
    "jobId": "j40959ba120534c138797d79bc9b40df9",
    "jobStatus": "esriJobSucceeded",
    "results": {
        "Solve_Succeeded": {
            "paramUrl": "results/Solve_Succeeded"
        },
        "Output_Routes": {
            "paramUrl": "results/Output_Routes"
        },
        "Output_Route_Edges": {
            "paramUrl": "results/Output_Route_Edges"
        },
        "Output_Directions": {
            "paramUrl": "results/Output_Directions"
        },
        "Output_Stops": {
            "paramUrl": "results/Output_Stops"
        }
    },
    "inputs": {
        "Stops": {
            "paramUrl": "inputs/Stops"
        },
        "Measurement_Units": {
            "paramUrl": "inputs/Measurement_Units"
        },
        "Analysis_Region": {
            "paramUrl": "inputs/Analysis_Region"
        },
        "Reorder_Stops_to_Find_Optimal_Routes": {
            "paramUrl": "inputs/Reorder_Stops_to_Find_Optimal_Routes"
        },
        "Preserve_Terminal_Stops": {
            "paramUrl": "inputs/Preserve_Terminal_Stops"
        },
        "Return_to_Start": {
            "paramUrl": "inputs/Return_to_Start"
        },
        "Use_Time_Windows": {
            "paramUrl": "inputs/Use_Time_Windows"
        },
        "Time_of_Day": {
            "paramUrl": "inputs/Time_of_Day"
        },
        "Time_Zone_for_Time_of_Day": {
            "paramUrl": "inputs/Time_Zone_for_Time_of_Day"
        },
        "UTurn_at_Junctions": {
            "paramUrl": "inputs/UTurn_at_Junctions"
        },
        "Point_Barriers": {
            "paramUrl": "inputs/Point_Barriers"
        },
        "Line_Barriers": {
            "paramUrl": "inputs/Line_Barriers"
        },
        "Polygon_Barriers": {
            "paramUrl": "inputs/Polygon_Barriers"
        },
        "Use_Hierarchy": {
            "paramUrl": "inputs/Use_Hierarchy"
        },
        "Restrictions": {
            "paramUrl": "inputs/Restrictions"
        },
        "Attribute_Parameter_Values": {
            "paramUrl": "inputs/Attribute_Parameter_Values"
        },
        "Route_Shape": {
            "paramUrl": "inputs/Route_Shape"
        },
        "Route_Line_Simplification_Tolerance": {
            "paramUrl": "inputs/Route_Line_Simplification_Tolerance"
        },
        "Populate_Route_Edges": {
            "paramUrl": "inputs/Populate_Route_Edges"
        },
        "Populate_Directions": {
            "paramUrl": "inputs/Populate_Directions"
        },
        "Directions_Language": {
            "paramUrl": "inputs/Directions_Language"
        },
        "Directions_Distance_Units": {
            "paramUrl": "inputs/Directions_Distance_Units"
        },
        "Directions_Style_Name": {
            "paramUrl": "inputs/Directions_Style_Name"
        }
    },
    "messages": []
}

Request URL to return output stops

Because the job succeeded, a request can be made to return the stops visited by the route. The output parameter used to retrieve these results is output_stops.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/results/output_stops?returnMessages=true&f=json&token=<yourToken>

JSON response

The stops are essentially duplicates of the input facilities, but they exclude any stops that weren't reached.

{
    "paramName": "Output_Closest_Facilities",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPoint",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
        "fields": [
            {
                "name": "OID",
                "type": "esriFieldTypeOID",
                "alias": "OID"
            },
            {
                "name": "Name",
                "type": "esriFieldTypeString",
                "alias": "Name",
                "length": 50
            },
            {
                "name": "ID",
                "type": "esriFieldTypeString",
                "alias": "ID",
                "length": 50
            },
            {
                "name": "AdditionalTime",
                "type": "esriFieldTypeDouble",
                "alias": "Additional Time"
            },
            {
                "name": "AdditionalDistance",
                "type": "esriFieldTypeDouble",
                "alias": "Additional Distance"
            },
            {
                "name": "CurbApproach",
                "type": "esriFieldTypeSmallInteger",
                "alias": "Curb Approach"
            },
            {
                "name": "ORIG_FID",
                "type": "esriFieldTypeSmallInteger",
                "alias": "ORIG_FID"
            }
        ],
        "features": [
            {
                "attributes": {
                    "OID": 1,
                    "Name": "Station 20",
                    "ID": null,
                    "AdditionalTime": 0,
                    "AdditionalDistance": 0,
                    "CurbApproach": 0,
                    "ORIG_FID": 1
                },
                "geometry": {
                    "x": -122.45596200044594,
                    "y": 37.75131599973366
                }
            },
            {
                "attributes": {
                    "OID": 2,
                    "Name": "Station 39",
                    "ID": null,
                    "AdditionalTime": 0,
                    "AdditionalDistance": 0,
                    "CurbApproach": 0,
                    "ORIG_FID": 3
                },
                "geometry": {
                    "x": -122.45784400000059,
                    "y": 37.74071300000497
                }
            }
        ],
        "exceededTransferLimit": false
    }
}

Request URL to return the output routes

Because the job succeeded, a request can be made to return the routes from the output_routes output parameter.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/results/output_stops?returnMessages=true&f=json&token=<yourToken>

JSON response

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
    "paramName": "Output_Routes",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
        "fields": [
            {
                "name": "OID",
                "type": "esriFieldTypeOID",
                "alias": "OID"
            },
            {
                "name": "Name",
                "type": "esriFieldTypeString",
                "alias": "Name",
                "length": 128
            },
            {
                "name": "StopCount",
                "type": "esriFieldTypeInteger",
                "alias": "StopCount"
            },
            {
                "name": "Total_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Total_Minutes"
            },
            {
                "name": "Total_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Total_Miles"
            },
            {
                "name": "FirstStopOID",
                "type": "esriFieldTypeInteger",
                "alias": "FirstStopOID"
            },
            {
                "name": "LastStopOID",
                "type": "esriFieldTypeInteger",
                "alias": "LastStopOID"
            },
            {
                "name": "Total_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Total_Kilometers"
            },
            {
                "name": "Shape_Length",
                "type": "esriFieldTypeDouble",
                "alias": "Shape_Length"
            }
        ],
        "features": [
            {
                "attributes": {
                    "OID": 1,
                    "Name": "Stop1 - Stop2",
                    "StopCount": 2,
                    "Total_Minutes": 12.560998302743993,
                    "Total_Miles": 5.332129199370574,
                    "FirstStopOID": 1,
                    "LastStopOID": 2,
                    "Total_Kilometers": 8.58123,
                    "Shape_Length": 0.08516636408377337
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.06591391900008,
                                -37.86473982999996
                            ],
                            [
                                145.0671000000001,
                                -37.86528999999996
                            ],
							                     
									...
							  ... additional points
							  ...
  
                            [
                                145.10584000000006,
                                -37.818539999999985
                            ],
                            [
                                145.10498172400003,
                                -37.81844463599998
                            ]
                        ]
                    ]
                }
            }
        ],
        "exceededTransferLimit": false
    }
}

Request URL to return the output route edges

A request can also be made to return the roads the route traversed by using the output_route_edges output parameter.

https://logistics.arcgis.com/arcgis/rest/services/World/Route/GPServer/FindRoutes/jobs/<yourJobID>/results/output_route_edges?returnMessages=true&f=json&<yourToken>

JSON response

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
    "paramName": "Output_Route_Edges",
    "dataType": "GPFeatureRecordSetLayer",
    "value": {
        "displayFieldName": "",
        "geometryType": "esriGeometryPolyline",
        "spatialReference": {
            "wkid": 4326,
            "latestWkid": 4326
        },
        "fields": [
            {
                "name": "ObjectID",
                "type": "esriFieldTypeOID",
                "alias": "ObjectID"
            },
            {
                "name": "SourceName",
                "type": "esriFieldTypeString",
                "alias": "SourceName",
                "length": 255
            },
            {
                "name": "SourceOID",
                "type": "esriFieldTypeInteger",
                "alias": "SourceOID"
            },
            {
                "name": "RouteEdgeID",
                "type": "esriFieldTypeInteger",
                "alias": "RouteEdgeID"
            },
            {
                "name": "FromPosition",
                "type": "esriFieldTypeDouble",
                "alias": "FromPosition"
            },
            {
                "name": "ToPosition",
                "type": "esriFieldTypeDouble",
                "alias": "ToPosition"
            },
            {
                "name": "RouteID",
                "type": "esriFieldTypeInteger",
                "alias": "RouteID"
            },
            {
                "name": "Attr_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Attr_Minutes"
            },
            {
                "name": "Cumul_Minutes",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Minutes"
            },
            {
                "name": "Attr_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Attr_Miles"
            },
            {
                "name": "Cumul_Miles",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Miles"
            },
            {
                "name": "Attr_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Attr_Kilometers"
            },
            {
                "name": "Cumul_Kilometers",
                "type": "esriFieldTypeDouble",
                "alias": "Cumul_Kilometers"
            },
            {
                "name": "Attr_Avoid_Unpaved_Roads",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Avoid Unpaved Roads"
            },
            {
                "name": "Attr_Avoid_Private_Roads",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Avoid Private Roads"
            },
            {
                "name": "Attr_Avoid_Gates",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Avoid Gates"
            },
            {
                "name": "Attr_Through_Traffic_Prohibited",
                "type": "esriFieldTypeInteger",
                "alias": "Attr_Through Traffic Prohibited"
            },
            {
                "name": "Shape_Length",
                "type": "esriFieldTypeDouble",
                "alias": "Shape_Length"
            }
        ],
        "features": [
            {
                "attributes": {
                    "ObjectID": 1,
                    "SourceName": "Routing_Streets",
                    "SourceOID": 348757,
                    "RouteEdgeID": 1044044,
                    "FromPosition": 0.24152278890808054,
                    "ToPosition": 0,
                    "RouteID": 1,
                    "Attr_Minutes": 0.26806711433068997,
                    "Cumul_Minutes": 0.26806711433068997,
                    "Attr_Miles": 0.08134,
                    "Cumul_Miles": 0.08134,
                    "Attr_Kilometers": 0.1309,
                    "Cumul_Kilometers": 0.13091,
                    "Attr_Avoid_Unpaved_Roads": 0,
                    "Attr_Avoid_Private_Roads": 0,
                    "Attr_Avoid_Gates": 0,
                    "Attr_Through_Traffic_Prohibited": 0,
                    "Shape_Length": 0.001307468992936962
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.06591391900008,
                                -37.86473982999996
                            ],
                            [
                                145.0671000000001,
                                -37.86528999999996
                            ]
                        ]
                    ]
                }
            },
            {
                "attributes": {
                    "ObjectID": 2,
                    "SourceName": "Routing_Streets",
                    "SourceOID": 348752,
                    "RouteEdgeID": 1044034,
                    "FromPosition": 0.7871324499552366,
                    "ToPosition": 0.6536826964062661,
                    "RouteID": 1,
                    "Attr_Minutes": 0.12864303488287535,
                    "Cumul_Minutes": 0.3967101492135653,
                    "Attr_Miles": 0.04901,
                    "Cumul_Miles": 0.13035,
                    "Attr_Kilometers": 0.07887,
                    "Cumul_Kilometers": 0.20977,
                    "Attr_Avoid_Unpaved_Roads": 0,
                    "Attr_Avoid_Private_Roads": 0,
                    "Attr_Avoid_Gates": 0,
                    "Attr_Through_Traffic_Prohibited": 0,
                    "Shape_Length": 0.0007660939890334768
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.0671000000001,
                                -37.86528999999996
                            ],
                            [
                                145.0666500000001,
                                -37.86466999999993
                            ]
                        ]
                    ]
                }
            },

							                     
												...
							     ... additional lines
							     ...
  

            {
                "attributes": {
                    "ObjectID": 94,
                    "SourceName": "Routing_Streets",
                    "SourceOID": 353664,
                    "RouteEdgeID": 1053829,
                    "FromPosition": 1,
                    "ToPosition": 0.5795813481826116,
                    "RouteID": 1,
                    "Attr_Minutes": 0.034457844833688085,
                    "Cumul_Minutes": 12.338099872364964,
                    "Attr_Miles": 0.00627,
                    "Cumul_Miles": 5.28493,
                    "Attr_Kilometers": 0.01009,
                    "Cumul_Kilometers": 8.50527,
                    "Attr_Avoid_Unpaved_Roads": 0,
                    "Attr_Avoid_Private_Roads": 0,
                    "Attr_Avoid_Gates": 0,
                    "Attr_Through_Traffic_Prohibited": 0,
                    "Shape_Length": 0.00009999999999763532
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.10592000000008,
                                -37.81859999999995
                            ],
                            [
                                145.10584000000006,
                                -37.818539999999985
                            ]
                        ]
                    ]
                }
            },
            {
                "attributes": {
                    "ObjectID": 95,
                    "SourceName": "Routing_Streets",
                    "SourceOID": 353638,
                    "RouteEdgeID": 1053824,
                    "FromPosition": 1,
                    "ToPosition": 0.8187049287099665,
                    "RouteID": 1,
                    "Attr_Minutes": 0.22289843037902846,
                    "Cumul_Minutes": 12.560998302743993,
                    "Attr_Miles": 0.0472,
                    "Cumul_Miles": 5.33213,
                    "Attr_Kilometers": 0.07596,
                    "Cumul_Kilometers": 8.58123,
                    "Attr_Avoid_Unpaved_Roads": 0,
                    "Attr_Avoid_Private_Roads": 0,
                    "Attr_Avoid_Gates": 0,
                    "Attr_Through_Traffic_Prohibited": 0,
                    "Shape_Length": 0.0008635577483443818
                },
                "geometry": {
                    "paths": [
                        [
                            [
                                145.10584000000006,
                                -37.818539999999985
                            ],
                            [
                                145.10498172400003,
                                -37.81844463599998
                            ]
                        ]
                    ]
                }
            }
        ],
        "exceededTransferLimit": false
    }
}