Skip To Content ArcGIS for Developers Sign In Dashboard

Vehicle Routing Problem service

Description

Various organizations service orders with a fleet of vehicles. For example, a large furniture store might use several trucks to deliver furniture to homes. A specialized grease recycling company might route trucks from a facility to pick up used grease from restaurants. A health department might schedule daily inspection visits for each of its health inspectors. The problem that is common to these examples is the vehicle routing problem (VRP). Each organization needs to determine which orders (homes, restaurants, or inspection sites) should be serviced by each route (truck or inspector) and in what sequence the orders should be visited. The primary goal is to best service the orders and minimize the overall operating cost for the fleet of vehicles. The VRP service can be used to determine solutions for such complex fleet management tasks. In addition, the service can solve more specific problems because numerous options are available, such as matching vehicle capacities with order quantities, providing a high level of customer service by honoring any time windows on orders, giving breaks to drivers, and pairing orders so they are serviced by the same route.

Consider an example of delivering goods to grocery stores from a central warehouse location. A fleet of three trucks is available at the warehouse. The warehouse operates only within a certain time window—from 8:00 a.m. to 5:00 p.m.—during which all trucks must return back to the warehouse. Each truck has a capacity of 15,000 pounds, which limits the amount of goods it can carry. Each store has a demand for a specific amount of goods (in pounds) that needs to be delivered, and each store has time windows that confine when deliveries should be made. Furthermore, the driver can work only eight hours per day, requires a break for lunch, and is paid for the amount of time spent on driving and servicing the stores. The service can be used to determine an itinerary for each route such that the deliveries can be made while honoring all the vehicle and order requirements and minimizing the total time spent on a particular route by the driver.

Dive-in:

The sequencing of orders performed by the service is always done using static travel times, even when the mode of transportation for the analysis uses an impedance that is based on dynamic travel times fluctuating according to traffic flows, in areas where traffic data is available. But when generating directions, the routes between the sequenced orders use dynamic travel speeds based on traffic.

See the devlab to learn more about how to solve the multiple vehicle routing problem.

Request parameters

ParameterDescription
orders

(Required)

Specify the orders the routes should visit.

Syntax:

depots

(Required)

Specify a location that a vehicle departs from at the beginning of its workday and returns to at the end of the workday.

Syntax:

routes

(Required)

Specify the routes that are available for the given vehicle routing problem.

Syntax:

token

(Required)

Provide the identity of a user that has the permissions to access the service.

f

(Required)

Specify the response format. The default value is html.

Values: html | json | pjson | kmz | geoJSON

default_date

(Optional)

Specify the date on which all of your routes start. The parameter value should be specified as a numeric value representing the milliseconds since midnight, January 1, 1970.

travel_mode

(Optional)

Choose the mode of transportation for the analysis. The default value is Custom. For more information on the accepted values for this parameter, see the travel_mode section below.

Value: JSON object

time_zone_usage_for_time_fields

(Optional)

Specify the time zone for the input date-time fields.

Values: GEO_LOCAL | UTC

impedance

(Optional)

Specify the impedance, which is a value that represents the effort or cost of traveling along road segments or on other parts of the transportation network.

Values: TravelTime | Minutes | TruckTravelTime | TruckMinutes | WalkTime | Miles | Kilometers | TimeAt1KPH

breaks

(Optional)

Specify the rest periods, or breaks, for the routes in a given vehicle routing problem. For more information on the accepted values for this parameter, see the break section below.

Syntax:

time_units

(Optional)

Specify the time units for all time-based attribute values specified with different parameters. The default value is Minutes.

Values: Minutes | Seconds | Hours | Days

distance_units

(Optional)

Specify the distance units for all distance-based attribute values specified with different parameters. The default value is Miles.

Values: Miles | Kilometers | Feet | Yards | Meters | NauticalMeters

analysis_region

(Optional)

Specify the region in which to perform the analysis.

uturn_policy

(Optional)

Restrict or permit U-turns at junctions. The default value is ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY.

Values: ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY | NO_UTURNS | ALLOW_UTURNS | ALLOW_DEAD_ENDS_ONLY

time_window_factor

(Optional)

Rate the importance of honoring time windows without causing violations. The default value is Medium.

Values: Medium | Low | High

spatially_cluster_routes

(Optional)

Specify if orders assigned to an individual route are spatially clustered. The default value is true.

Values: true | false

route_zones

(Optional)

Specify areas that delineate work territories for given routes.

Syntax:

route_renewals

(Optional)

Specify the intermediate depots that routes can visit to reload or unload the cargo they are delivering or picking up.

Syntax:

order_pairs

(Optional)

Pair pickup and delivery orders so they are serviced by the same route.

Syntax:

excess_transit_factor

(Optional)

Rate the importance of reducing excess transit time of order pairs. The default value is Medium.

Values: Medium | Low | High

point_barriers

(Optional)

Specify one or more points that act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets.

Syntax:

line_barriers

(Optional)

Specify one or more lines that prohibit travel anywhere the lines intersect the streets.

Syntax:

polygon_barriers

(Optional)

Specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.

Syntax:

use_hierarchy_in_analysis

(Optional)

Specify if hierarchy should be used when finding the best routes for the fleet of vehicles. The default value is true.

Values: true | false

restrictions

(Optional)

Specify which restrictions should be honored by the service. The default value for this parameters is demonstrated in the example below:

restrictions=[Avoid Carpool Roads, Avoid Express Lanes, Avoid Gates, Avoid Private Roads, Avoid Unpaved Roads, Driving an Automobile, Roads Under Construction Prohibited, Through Traffic Prohibited]

To view all accepted values for this parameter, see the restrictions section below.

attribute_parameter_values

(Optional)

Specify additional values required by an attribute or restriction, such as whether the restriction prohibits, avoids, or prefers travel on restricted roads. To view all accepted values for this parameter, see the attribute_parameter_values section below.

populate_route_lines

(Optional)

Specify the shape of the output routes. The default value is true.

Values: true | false

route_line_simplification_tolerance

(Optional)

Specify the amount by which you want to simplify the route geometry returned by the service. The default value is demonstrated in the example below:

{
  "distance": 10,
  "units": "esriMeters"
}

To view all accepted values for this parameter, see the route_line_simplification_tolerance section below.

populate_directions

(Optional)

Specify if the service should generate driving directions for the routes that are included as part of the vehicle routing problem solution. The default value is false.

Values: true | false

directions_language

(Optional)

Specify the language that should be used when generating driving directions. Applies only when the populate_directions parameter is set to true. The default value is en. To view all accepted values, see the directions_language section below.

directions_style_name

(Optional)

Specify the name of the formatting style for the directions. Applies only when the populate_directions parameter is set to true. The default value is NA Desktop.

Values: NA Desktop | NA Navigation

save_route_data

(Optional)

Specify whether the service should create a ZIP file that contains a file geodatabase holding the inputs and outputs of the analysis in a format that can be used to share route layers with your portal. The default value is false.

Values: true | false

save_output_network_analysis_layer

(Optional)

Specify if the service should save the analysis settings as a network analysis layer file. The default value is false.

Values: true | false

overrides

(Optional)

Specify additional settings that can influence the behavior of the solver.

time_impedance

(Optional)

Specify the time-based impedance, which is a value that represents the travel time along road segments or on other parts of the transportation network.

distance_impedance

(Optional)

Specify the distance-based impedance, which is a value that represents the travel distance along road segments or on other parts of the transportation.

populate_stop_shapes

(Optional)

Specify if the tool should create the shapes for the output assigned and unassigned stops. The default value is false.

Values: true | false

output_format

(Optional)

Specify the format in which the output features are created. The default value is Feature Set.

Values: Feature Set | JSON File | GeoJSON File

env:outSR

(Optional)

Specify the spatial reference of the geometries.

Required parameters

orders

Use this parameter to specify the orders the routes should visit. An order can represent a delivery (for example, furniture delivery), a pickup (such as an airport shuttle bus picking up a passenger), or some type of service or inspection (a tree trimming job or building inspection, for instance).

A maximum of 100 orders can be specified for synchronous execution and 2,000 for asynchronous execution.

The orders parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the order geometries. This property is not required if the coordinate values are in the same spatial reference as your network dataset. If the coordinate values are in a different spatial reference, you need to specify the well-known ID (WKID) for the spatial reference. See Geographic coordinate systems and projected coordinate systems to look up WKID values.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents an order and contains the following properties:

  • geometry—Specifies the order geometry as a point containing x and y properties.
  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for orders

When specifying the orders, you can set properties for each one, such as its name or service time, using attributes. The orders can be specified with the following attributes:

  • ObjectID

    The system-managed ID field.

  • Name

    The name of the order. The name must be unique. If the name is left null, a name is automatically generated at solve time.

  • Description

    The descriptive information about the order. This can contain any textual information for the order and has no restrictions for uniqueness. You may want to store a client's ID number in the Name field and the client's actual name or address in the Description field.

  • ServiceTime

    This property specifies the amount of time that will be spent at the network location when the route visits it; that is, it stores the impedance value for the network location. A zero or null value indicates that the network location requires no service time.

    The unit for this field value is specified by the time_units parameter.

  • TimeWindowStart1

    The beginning time of the first time window for the network location. This field can contain a null value; a null value indicates no beginning time.

    A time window only states when a vehicle can arrive at an order; it doesn't state when the service time must be completed. To account for service time and departure before the time window ends, subtract ServiceTime from the TimeWindowEnd1field.

    The time window fields (TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, and TimeWindowEnd2) must be specified in a date field as an integer that represents the number of milliseconds since epoch (January 1, 1970) and not as date-time values. The time zone for time window fields is specified using the time_zone_usage_for_time_fields parameter. For example, if the orders are located in the Pacific standard time zone and you want to specify that the time window should start at 8:00 a.m. (local time) on November 11, 2019, the value for the TimeWindowStart1 field should be specified as milliseconds since epoch for this date and time, which is 1574064000. You also should specify the time_zone_usage_for_time_fields parameter value as GEO_LOCAL.

    When solving a problem that spans multiple time zones, each order's time-window values refer to the time zone in which the order is located.

  • TimeWindowEnd1

    The ending time of the first window for the network location. This field can contain a null value; a null value indicates no ending time.

  • TimeWindowStart2

    The beginning time of the second time window for the network location. This field can contain a null value; a null value indicates that there is no second time window.

    If the first time window is null as specified by the TimeWindowStart1 and TimeWindowEnd1 fields, the second time window must also be null.

    If both time windows are nonnull, they can't overlap. Also, the second time window must occur after the first.

  • TimeWindowEnd2

    The ending time of the second time window for the network location. This field can contain a null value.

    When TimeWindowStart2 and TimeWindowEnd2 are both null, there is no second time window.

    When TimeWindowStart2 is not null but TimeWindowEnd2is null, there is a second time window that has a starting time but no ending time. This is valid.

  • MaxViolationTime1

    A time window is considered violated if the arrival time occurs after the time window has ended. This field specifies the maximum allowable violation time for the first time window of the order. It can contain a zero value but can't contain negative values. A zero value indicates that a time window violation at the first time window of the order is unacceptable; that is, the first time window is hard. Conversely, a null value indicates that there is no limit on the allowable violation time. A nonzero value specifies the maximum amount of lateness; for example, a route can arrive at an order up to 30 minutes beyond the end of its first time window.

    The unit for this field value is specified by the Time Field Units parameter

    Time window violations can be tracked and weighted by the solver. Because of this, you can direct the VRP solver to do one of the following:

    • Minimize the overall violation time, regardless of the increase in travel cost for the fleet.
    • Find a solution that balances overall violation time and travel cost.
    • Ignore the overall violation time, and minimize the travel cost for the fleet.

    By assigning an importance level for the Time Window Violation Importance parameter, you are essentially choosing one of these options. In any case, however, the solver will return an error if the value set for MaxViolationTime1 is surpassed.

  • MaxViolationTime2

    The maximum allowable violation time for the second time window of the order. This field is analogous to the MaxViolationTime1 field.

  • InboundArriveTime

    Defines when the item to be delivered to the order will be ready at the starting depot.

    Note:

    The VRP solver honors InboundArriveTime regardless of the DeliveryQuantities value.

    The order can be assigned to a route only if the inbound arrive time precedes the route's latest start time value; this way, the route cannot leave the depot before the item is ready to be loaded onto it.

    Note:

    The route's start time, which includes service times, must occur after the inbound arrive time. If a route begins before an order's inbound arrive time, the order cannot be assigned to the route. The assignment is invalid even if the route has a start-depot service time that lasts until after the inbound arrive time.

    If an outbound depart time is also specified, its time value must occur after the inbound arrive time.

    This field can help model scenarios involving inbound-wave transshipments. For example, a job at an order requires special materials that are not currently available at the depot. The materials are being shipped from another location and will arrive at the depot at 11:00 a.m. To ensure a route that leaves before the shipment arrives isn't assigned to the order, the order's inbound arrive time is set to 11:00 a.m. The special materials arrive at 11:00 a.m., they are loaded onto the vehicle, and the vehicle departs from the depot to visit its assigned orders.

    Note:

    This time field can contain a time-only value or a date and time value. If a time-only value is set (for example, 11:00 AM), the date is assumed to be the default date set for the analysis. The default date is ignored, however, when any time field in the Depots, Routes, Orders, or Breaks includes a date with the time. In that case, specify all such fields with a date and time (for example, 7/11/2015 11:00 AM).

  • OutboundDepartTime

    Defines when the item to be picked up at the order must arrive at the ending depot.

    Note:

    The VRP solver honors OutboundDepartTime regardless of the PickupQuantities value.

    The order can be assigned to a route only if the route can visit the order and reach its end depot before the specified outbound depart time.

    Note:

    The route's end time, including service times, must occur before the outbound depart time. If a route reaches a depot but doesn't complete its end-depot service time prior to the order's outbound depart time, the order cannot be assigned to the route.

    If an inbound arrive time is also specified, its time value must occur before the outbound depart time.

    This field can help model scenarios involving outbound-wave transshipments. For instance, a shipping company sends out delivery trucks to pick up packages from orders and bring them into a depot where they are forwarded on to other facilities, en route to their final destination. At 3:00 p.m. every day, a semitrailer stops at the depot to pick up the high-priority packages and take them directly to a central processing station. To avoid delaying the high-priority packages until the next day's 3:00 p.m. trip, the shipping company tries to have delivery trucks pick up the high-priority packages from orders and bring them to the depot before the 3:00 p.m. deadline. This is done by setting the outbound depart time to 3:00 p.m.

    Note:

    This time field can contain a time-only value or a date and time value. If a time-only value is set (for example, 11:00 AM), the date is assumed to be the default date set for the analysis. The default date is ignored, however, when any time field in the Depots, Routes, Orders, or Breaks includes a date with the time. In that case, specify all such fields with a date and time (for example, 7/11/2015 11:00 AM).

  • DeliveryQuantities

    The size of the delivery. You can specify size in any dimension, such as weight, volume, or quantity. You can even specify multiple dimensions, for example, weight and volume.

    Enter delivery quantities without indicating units. For example, if a 300-pound object needs to be delivered to an order, enter 300. You will need to remember that the value is in pounds.

    If you are tracking multiple dimensions, separate the numeric values with a space. For example, if you are recording the weight and volume of a delivery that weighs 2,000 pounds and has a volume of 100 cubic feet, enter 2000 100. Again, you need to remember the units—in this case, pounds and cubic feet. You also need to remember the sequence in which the values and their corresponding units are entered.

    Make sure that Capacities for Routes and DeliveryQuantities and PickupQuantities for Orders are specified in the same manner; that is, the values must be in the same units. If you are using multiple dimensions, the dimensions must be listed in the same sequence for all parameters. For example, if you specify weight in pounds, followed by volume in cubic feet for DeliveryQuantities, the capacity of your routes and the pickup quantities of your orders must be specified the same way: weight in pounds, then volume in cubic feet. If you combine units or change the sequence, you will get unwanted results with no warning messages.

    An empty string or null value is equivalent to all dimensions being zero. If the string has an insufficient number of values in relation to the capacity count or dimensions being tracked, the remaining values are treated as zeros. Delivery quantities can't be negative.

  • PickupQuantities

    The size of the pickup. You can specify size in any dimension, such as weight, volume, or quantity. You can even specify multiple dimensions, for example, weight and volume. You cannot, however, use negative values. This field is analogous to the DeliveryQuantities field of Orders.

    In the case of an exchange visit, an order can have both delivery and pickup quantities.

  • Revenue

    The income generated if the order is included in a solution. This field can contain a null value—a null value indicates zero revenue—but it can't have a negative value.

    Revenue is included in optimizing the objective function value but is not part of the solution's operating cost; that is, the TotalCost field in the routes never includes revenue in its output. However, revenue weights the relative importance of servicing orders.

  • SpecialtyNames

    A space-separated string containing the names of the specialties required by the order. A null value indicates that the order doesn't require specialties.

    The spelling of any specialties listed in the Orders and Routes classes must match exactly so that the VRP solver can link them together.

    To illustrate what specialties are and how they work, assume a lawn care and tree trimming company has a portion of its orders that requires a bucket truck to trim tall trees. The company would enter BucketTruck in the SpecialtyNames field for these orders to indicate their special need. SpecialtyNames would be left as null for the other orders. Similarly, the company would also enter BucketTruck in the SpecialtyNames field of routes that are driven by trucks with hydraulic booms. It would leave the field null for the other routes. At solve time, the VRP solver assigns orders without special needs to any route, but it only assigns orders that need bucket trucks to routes that have them.

  • AssignmentRule

    Specifies the rule for assigning the order to a route. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

    • 0 (Exclude)—The order will be excluded from the subsequent solve operation.
    • 1 (Preserve route and relative sequence)—The solver must always assign the order to the preassigned route at the preassigned relative sequence during the solve operation. If this assignment rule can't be followed, it results in an order violation. With this setting, only the relative sequence is maintained, not the absolute sequence. To illustrate what this means, imagine there are two orders: A and B. They have sequence values of 2 and 3, respectively. If you set their AssignmentRule field values to Preserve route and relative sequence, the sequence values for A and B may change after solving because other orders, breaks, and depot visits could be sequenced before, between, or after A and B. However, B cannot be sequenced before A.
    • 2 (Preserve route)—The solver must always assign the order to the preassigned route during the solve operation. A valid sequence must also be set even though the sequence may or may not be preserved. If the order can't be assigned to the specified route, it results in an order violation.
    • 3 (Override)—The solver tries to preserve the route and sequence preassignment for the order during the solve operation. However, a new route or sequence for the order may be assigned if it helps minimize the overall value of the objective function. This is the default value.
    • 4 (Anchor first)—The solver ignores the route and sequence preassignment (if any) for the order during the solve operation. It assigns a route to the order and makes it the first order on that route to minimize the overall value of the objective function.
    • 5 (Anchor last)—The solver ignores the route and sequence preassignment (if any) for the order during the solve operation. It assigns a route to the order and makes it the last order on that route to minimize the overall value of the objective function.

    This field can't contain a null value.

  • CurbApproach

    Specifies the direction a vehicle may arrive at and depart from the order. One of the integers listed in the Coded value column in the following table must be specified as a value of this attribute. The values in the Setting column are the descriptive names for the CurbApproach attribute values that you might have come across when using ArcGIS Network Analyst extension software.

    SettingCoded valueDescription

    Either side of vehicle

    0

    The vehicle can approach and depart the order in either direction, so a U-turn is allowed at the order. This setting can be chosen if it is possible and desirable for your vehicle to turn around at the order. This decision may depend on the width of the road and the amount of traffic or whether the order has a parking lot where vehicles can pull in and turn around.

    Either side of vehicle
    All arrival and departure combinations are allowed with the Either side of vehicle curb approach.

    Right side of vehicle

    1

    When the vehicle approaches and departs the order, the order must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must arrive with the bus stop on the right side.

    Right side of vehicle
    The allowed arrival and departure combination for the Right side of vehicle curb approach

    Left side of vehicle

    2

    When the vehicle approaches and departs the order, the order must be on the left side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must arrive with the bus stop on the left side.

    Left side of vehicle
    The allowed arrival and departure combination for the Left side of vehicle curb approach

    No U-Turn

    3

    When the vehicle approaches the order, the order can be on either side of the vehicle; however, when it departs, the vehicle must continue in the same direction it arrived in. A U-turn is prohibited.

    No U-turns
    The allowed arrival and departure combinations for the No U-Turn curb approach

    The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an order on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach an order from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at an order and not have a lane of traffic between the vehicle and the order, you would choose 1 (Right side of vehicle) in the United States but 2 (Left side of vehicle) in the United Kingdom.

    Right side of vehicle with right-hand traffic
    With right-hand traffic, the curb approach that leaves the vehicle closest to the stop is Right side of vehicle.
    Left side of vehicle with left-hand traffic
    With left-hand traffic, the curb approach that leaves the vehicle closest to the stop is Left side of vehicle.
  • RouteName

    The name of the route to which the order is assigned.

    This field is used to preassign an order to a specific route. It can contain a null value, indicating that the order is not preassigned to any route, and the solver identifies the best possible route assignment for the order. If this is set to null, the Sequence field must also be set to null.

    After a solve operation, if the order is routed, the RouteName field contains the name of the route to which the order is assigned.

  • Sequence

    This indicates the sequence of the order on its assigned route.

    This field is used to specify the relative sequence for an order on the route. This field can contain a null value specifying that the order can be placed anywhere along the route. A null value can only occur together with a null RouteName value.

    The input sequence values are positive and unique for each route (shared across renewal depot visits, orders, and breaks) but do not need to start from 1 or be contiguous.

    After a solve operation, the Sequence field contains the sequence value of the order on its assigned route. Output sequence values for a route are shared across depot visits, orders, and breaks; start from 1 (at the starting depot); and are consecutive. So the smallest possible output sequence value for a routed order is 2, since a route always begins at a depot

  • Bearing

    The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the BearingTol field.

    Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.

    Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass for example. Bearing also helps the tool determine on which side of the street the point is.

  • BearingTol

    The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the Bearing field. If the value from the Bearing field is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.

    The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when ArcGIS Network Analyst extension attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.

  • NavLatency

    This field is only used in the solve process if Bearing and BearingTol also have values; however, entering a NavLatency value is optional, even when values are present in Bearing and BearingTol. NavLatency indicates how much time is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.

    The time units of NavLatency are the same as the units specified by the timeUnits property of the analysis object.

Syntax examples for orders

Syntax for specifying orders using JSON structure for features

{
  "spatialReference": {
    "wkid": <wkid>,
    "latestWkid": <wkid>
  },
  "features": [
    {
      "geometry": {
        "x": <x1>,
        "y": <y1>
      },
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "geometry": {
        "x": <x2>,
        "y": <y2>
      },
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying orders using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for orders

Example one: Specifying orders in the spatial reference of the network dataset using JSON structure

The order geometries are in the spatial reference of the network dataset. Therefore, the spatialReference property is not specified. The example also shows how to specify some attributes for the orders.

{
  "features": [
    {
      "geometry": {
        "x": -0.1891,
        "y": 51.5254
      },
      "attributes": {
        "Name": "Order 1",
        "TimeWindowStart1": null,
        "TimeWindowEnd1": 1562061600000,
        "MaxViolationTime1": 0,
        "DeliveryQuantities": "2000 100"
      }
    },
    {
      "geometry": {
        "x": -0.1744,
        "y": 51.5353
      },
      "attributes": {
        "Name": "Order 2",
        "TimeWindowStart1": 1562054400000,
        "TimeWindowEnd1": 1562061600000,
        "MaxViolationTime1": 30,
        "DeliveryQuantities": "1500 75"
      }
    }
  ]
}

Example two: Specifying orders in the Web Mercator spatial reference using JSON structure

The order geometries are in the Web Mercator spatial reference and not in the spatial reference of the network dataset. Therefore, the spatialReference property is required.

{
  "spatialReference": {
    "wkid": 102100
  },
  "features": [
    {
      "geometry": {
        "x": 2698533.989,
        "y": 5192521.476
      },
      "attributes": {
        "Name": "200156",
        "SpecialtyNames": "Forklift",
        "PickupQuantities": 1,
        "ServiceTime": 60,
        "CurbApproach": 3
      }
    },
    {
      "geometry": {
        "x": 2697821.094,
        "y": 5191915.261
      },
      "attributes": {
        "Name": "300242",
        "DeliveryQuantities": 1,
        "ServiceTime": 30
      }
    }
  ]
}

Example three: Specifying orders using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
  "url": "https://machine.domain.com/webadaptor/rest/services/NetworkAnalysis/SanDiego/MapServer/21/query?where=1%3D1&outFields=Name&f=json"
}

depots

Use this parameter to specify a location that a vehicle departs from at the beginning of its workday and returns to at the end of the workday. Vehicles are loaded (for deliveries) or unloaded (for pickups) at depots at the start of the route. In some cases, a depot can also act as a renewal location whereby the vehicle can be unloaded or reloaded and continue performing deliveries and pickups. A depot has open and close times, as specified by a hard time window. Vehicles can't arrive at a depot outside of this time window.

The depots parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the depot geometries. This property is not required if the coordinate values are in the same spatial reference as your network dataset. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See geographic coordinate systems and projected coordinate systems to look up WKID values.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a depot and contains the following properties:

  • geometry—Specifies the depot geometry as a point containing x and y properties.
  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for depots

When specifying the depots, you can set properties for each one, such as its name or service time, by using attributes. The depots can be specified with the following attributes:

  • ObjectID

    The system-managed ID field.

  • Name

    The name of the depot. The StartDepotName and EndDepotNamefields on routes reference the names you specify here. It is also referenced by the route renewals, when used.

    Depot names are not case sensitive but must be nonempty and unique.

  • Description

    The descriptive information about the depot location. This can contain any textual information and has no restrictions for uniqueness.

    For example, if you want to note which region a depot is in or the depot's address and telephone number, you can enter the information here rather than in the Name field.

  • TimeWindowStart1

    The beginning time of the first time window for the network location. This field can contain a null value; a null value indicates no beginning time.

    The time window fields (TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, and TimeWindowEnd2) must be specified in a date field as an integer that represents the number of milliseconds since epoch (January 1, 1970) and not as date-time values. The time zone for time window fields is specified using the time_zone_usage_for_time_fields parameter. For example, if the orders are located in the Pacific standard time zone and you want to specify that the time window should start at 8:00 a.m. (local time) on November 11, 2019, the value for the TimeWindowStart1 field should be specified as milliseconds since epoch for this date and time, which is 1574064000. You also should specify the time_zone_usage_for_time_fields parameter value as GEO_LOCAL.

    When solving a problem that spans multiple time zones, each depot's time-window values refer to the time zone in which the depot is located.

  • TimeWindowEnd1

    The ending time of the first window for the network location. This field can contain a null value; a null value indicates no ending time.

  • TimeWindowStart2

    The beginning time of the second time window for the network location. This field can contain a null value; a null value indicates that there is no second time window.

    If the first time window is null, as specified by the TimeWindowStart1 and TimeWindowEnd1 fields, the second time window must also be null.

    If both time windows are not null, they can't overlap. Also, the second time window must occur after the first.

  • TimeWindowEnd2

    The ending time of the second time window for the network location. This field can contain a null value.

    When TimeWindowStart2 and TimeWindowEnd2 are both null, there is no second time window.

    When TimeWindowStart2 is not null but TimeWindowEnd2 is null, there is a second time window that has a starting time but no ending time. This is valid.

  • CurbApproach

    Specifies the direction a vehicle may arrive at and depart from the depot. One of the integers listed in the Coded value column in the following table must be specified as a value of this attribute. The values in the Setting column are the descriptive names for CurbApproach attribute values that you might have come across when using ArcGIS Network Analyst Extension software.

    SettingCoded valueDescription

    Either side of vehicle

    0

    The vehicle can approach and depart the depot in either direction, so a U-turn is allowed at the depot. This setting can be chosen if it is possible and desirable for your vehicle to turn around at the depot. This decision may depend on the width of the road and the amount of traffic or whether the depot has a parking lot where vehicles can pull in and turn around.

    Either side of vehicle
    All arrival and departure combinations are allowed with the Either side of vehicle curb approach.

    Right side of vehicle

    1

    When the vehicle approaches and departs the depot, the depot must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must arrive with the bus stop on the right side.

    Right side of vehicle
    The allowed arrival and departure combination for the Right side of vehicle curb approach

    Left side of vehicle

    2

    When the vehicle approaches and departs the depot, the depot must be on the left side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must arrive with the bus stop on the left side.

    Left side of vehicle
    The allowed arrival and departure combination for the Left side of vehicle curb approach

    No U-Turn

    3

    When the vehicle approaches the depot, the depot can be on either side of the vehicle; however, when it departs, the vehicle must continue in the same direction it arrived in. A U-turn is prohibited.

    No U-turns
    The allowed arrival and departure combinations for the No U-Turn curb approach

    The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider a depot on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach a depot from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at a depot and not have a lane of traffic between the vehicle and the depot, you would choose 1 (Right side of vehicle) in the United States but 2 (Left side of vehicle) in the United Kingdom.

    Right side of vehicle with right-hand traffic
    With right-hand traffic, the curb approach that leaves the vehicle closest to the stop is Right side of vehicle.
    Left side of vehicle with left-hand traffic
    With left-hand traffic, the curb approach that leaves the vehicle closest to the stop is Left side of vehicle.
  • Bearing

    The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the BearingTol field.

    Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.

    Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass for example. Bearing also helps the tool determine on which side of the street the point is.

  • BearingTol

    The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the Bearing field. If the value from the Bearing field is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.

    The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when ArcGIS Network Analyst extension attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.

  • NavLatency

    This field is only used in the solve process if Bearing and BearingTol also have values; however, entering a NavLatency value is optional, even when values are present in Bearing and BearingTol. NavLatency indicates how much time is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.

    The time units of NavLatency are the same as the units specified by the timeUnits property of the analysis object.

Syntax examples for depots

Syntax for specifying depots using JSON structure for features

{
  "spatialReference": {
    "wkid": <wkid>,
    "latestWkid": <wkid>
  },
  "features": [
    {
      "geometry": {
        "x": <x1>,
        "y": <y1>
      },
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "geometry": {
        "x": <x2>,
        "y": <y2>
      },
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying depots using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for depots

Example one: Specifying depots in the spatial reference of the network dataset using JSON structure

The depot geometries are in the spatial reference of the network dataset. Therefore, the spatialReference property is not specified. The example also shows how to specify some attributes for the depots.

{
  "features": [
    {
      "geometry": {
        "x": -0.1891,
        "y": 51.5254
      },
      "attributes": {
        "Name": "Depot1",
        "TimeWindowStart1": null,
        "TimeWindowEnd1": "1358362800000"
      }
    },
    {
      "geometry": {
        "x": -0.1744,
        "y": 51.5353
      },
      "attributes": {
        "Name": "Depot2",
        "TimeWindowStart1": "1358359200000",
        "TimeWindowEnd1": "1358362800000"
      }
    }
  ]
}

Example two: Specifying depots in the Web Mercator spatial reference using JSON structure

The depot geometries are in the Web Mercator spatial reference and not in the spatial reference of the network dataset. Therefore, the spatialReference property is required.

{
  "spatialReference": {
    "wkid": 102100
  },
  "features": [
    {
      "geometry": {
        "x": 2698533.989,
        "y": 5192521.476
      },
      "attributes": {
        "Name": "400181",
        "CurbApproach": 3
      }
    },
    {
      "geometry": {
        "x": 2697821.094,
        "y": 5191915.261
      },
      "attributes": {
        "Name": "400161",
        "CurbApproach": 1
      }
    }
  ]
}

Example three: Specifying depots using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
  "url": "https://machine.domain.com/webadaptor/rest/services/NetworkAnalysis/SanDiego/MapServer/21/query?where=1%3D1&outFields=Name&f=json"
}

routes

Use this parameter to specify the routes that are available for the given vehicle routing problem. A route specifies vehicle and driver characteristics; in service response, it also represents the path between depots and orders.

A route can have start and end depot service times, a fixed or flexible starting time, time-based operating costs, distance-based operating costs, multiple capacities, various constraints on a driver's workday, and so on.

The routes parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a route and contains the following properties:

  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.
Note:

Unlike the orders or depots parameter, the JSON structure for the routes parameter does not have a geometry property.

Attributes for routes

When specifying the routes, you can specify additional properties for routes, such as their names or capacities, using attributes. The routes parameter can be specified with the following attributes:

  • Name

    The name of the route. The name must be unique.

    The service generates a unique name if the attribute value is null. Therefore, specifying a value is optional in most cases. However, you must specify a name if your analysis includes breaks, route renewals, route zones, or orders that are preassigned to a route because the route name is used as a foreign key in these cases. Note that route names are case insensitive.

  • StartDepotName

    The name of the starting depot for the route. This attribute is a foreign key to the Name attribute in the depots parameter, so the values must match.

    If the StartDepotName value is null, the route will begin from the first order assigned. Omitting the start depot is useful when the vehicle's starting location is unknown or irrelevant to your problem. However, when StartDepotName is null, EndDepotName cannot also be null.

    Virtual start depots are not allowed if orders or depots are in multiple time zones.

    If the route is making deliveries and StartDepotName is null, it is assumed the cargo is loaded on the vehicle at a virtual depot before the route begins. For a route that has no renewal visits, its delivery orders (those with nonzero DeliveryQuantities values in the orders parameter) are loaded at the start depot or virtual depot. For a route that has renewal visits, only the delivery orders before the first renewal visit are loaded at the start depot or virtual depot.

  • EndDepotName

    The name of the ending depot for the route. This attribute is a foreign key to the Name attribute in the depots parameter, so the values must match.

  • StartDepotServiceTime

    The service time at the starting depot. This can be used to model the time spent loading the vehicle. This attribute can contain a null value; a null value indicates zero service time. The unit for this attribute value is specified by the time_units parameter.

  • EndDepotServiceTime

    The service time at the ending depot. This can be used to model the time spent unloading the vehicle. This attribute can contain a null value; a null value indicates zero service time. The unit for this attribute value is specified by the time_units parameter.

    The service times at the start and end depots are fixed values (given by the StartDepotServiceTime and EndDepotServiceTime attribute values) and do not take into account the actual load for a route. For example, the time taken to load a vehicle at the starting depot may depend on the size of the orders. Therefore, the depot service times could be given values corresponding to a full truckload or an average truckload, or you could make your own time estimate.

  • EarliestStartTime

    The earliest allowable starting time for the route. This is used by the service in conjunction with the time window of the starting depot for determining feasible route start times.

    This attribute can't contain null values and has a default time-only value of 8:00 AM on the date given by the default_date parameter or the current date if unspecified.

  • LatestStartTime

    The latest allowable starting time for the route. This attribute can't contain null values and has a default time-only value of 10:00 AM; the default value is interpreted as 10:00 a.m. on the date given by the default_date parameter.

    The value for the EarliestStartTime and LatestStartTime attributes is specified in a date field as an integer that represents the number of milliseconds since epoch (January 1, 1970).

    The time zone is specified using the time_zone_usage_for_time_fields parameter. If set to GEO_LOCAL, the time is in the time zone where the route's depot is located. This is useful if your routes span multiple time zones but they all start at a consistent time (for example, 8:00 a.m. in the depot's time zone). If the parameter is set to UTC, the time is based on UTC time. This is useful if you don't know the time zone of an individual route's depot but know its absolute time (for example, the time window starts an hour from now).

  • ArriveDepartDelay

    Stores the amount of travel time needed to accelerate the vehicle to normal travel speeds, decelerate it to a stop, and move it off and on the network (for example, in and out of parking). By including an ArriveDepartDelay value, the service is deterred from sending many routes to service physically coincident orders.

    The cost for this attribute is incurred between visits to noncoincident orders, depots, and route renewals. For example, when a route starts from a depot and visits the first order, the total arrive/depart delay is added to the travel time. The same is true when traveling from the first order to the second order. If the second and third orders are coincident, the ArriveDepartDelay value is not added between them because the vehicle doesn't need to move. If the route travels to a route renewal, the value is added to the travel time again.

    Although a vehicle needs to slow down and stop for a break and accelerate afterward, the service cannot add the ArriveDepartDelay value for breaks. This means that if a route leaves an order, stops for a break, and continues to the next order, the arrive/depart delay is added only once, not twice.

    To illustrate, assume there are five coincident orders in a high-rise building, and they are serviced by three different routes. This means three arrive/depart delays would be incurred; that is, three drivers would need to separately find parking places and enter the same building. However, if the orders could be serviced by just one route instead, only one driver would need to park and enter the building—only one arrive/depart delay would be incurred. Since the service tries to minimize cost, it will try to limit the arrive/depart delays and thus choose the single-route option. (Note that multiple routes may need to be sent when other constraints—such as specialties, time windows, or capacities—require it.)

    The unit for this attribute value is specified by the time_units parameter.

  • Capacities

    The maximum capacity of the vehicle. You can specify capacity in any dimension you want, such as weight, volume, or quantity. You can even specify multiple dimensions, for example, weight and volume.

    Specify capacities without indicating units. For example, assume your vehicle can carry a maximum of 40,000 pounds; you would specify 40000 as the value for the Capacities attribute. You need to remember for future reference that the value is in pounds.

    If you are tracking multiple dimensions, separate the numeric values with a space. For instance, if you are recording both weight and volume and your vehicle can carry a maximum weight of 40,000 pounds and a maximum volume of 2,000 cubic feet, Capacities should be specified as 40000 2000. Again, you need to remember the units. You also need to remember the sequence in which the values and their corresponding units are specified (pounds followed by cubic feet in this case).

    Remembering the units and the unit sequence is important for a couple of reasons: first, so you can reinterpret the information later, and second, so you can properly enter values for the DeliveryQuantities and PickupQuantities attributes in the orders parameter. To elaborate on the second point, note that the service simultaneously refers to Capacities, DeliveryQuantities, and PickupQuantities attributes to make sure that a route doesn't become overloaded. Since units can't be entered in the field, the service can't make unit conversions, so you need to specify the values for the three attributes using the same units and the same unit sequence to ensure the values are correctly interpreted. If you mix units or change the sequence in any of the three attributes, you will get unwanted results without receiving any warning messages. Thus, it is a good idea to set up a unit and unit-sequence standard beforehand and continually refer to it whenever specifying values for these three attributes.

    An empty string or null value is equivalent to all values being zero. Capacity values can't be negative.

    If the Capacities string has an insufficient number of values in relation to the DeliveryQuantities or PickupQuantities attributes in the orders parameter, the remaining values are treated as zero.

    Caution:

    The service only performs a simple Boolean test to determine whether capacities are exceeded. If a route's capacity value is greater than or equal to the total quantity being carried, the service will assume the cargo fits in the vehicle. This could be incorrect, depending on the actual shape of the cargo and the vehicle. For example, the service allows you to fit a 1,000-cubic-foot sphere into a 1,000-cubic-foot truck that is 8 feet wide. In reality, however, since the sphere is 12.6 feet in diameter, it won't fit in the 8-foot wide truck.

  • FixedCost

    A fixed monetary cost that is incurred only if the route is used in a solution (that is, it has orders assigned to it). This attribute can contain null values; a null value indicates zero fixed cost. This cost is part of the total route operating cost.

  • CostPerUnitTime

    The monetary cost incurred (per unit of work time) for the total route duration, including travel times as well as service times and wait times at orders, depots, and breaks. This attribute can't contain a null value and has a default value of 1.0. The unit for this attribute value is specified by the time_units parameter.

  • CostPerUnitDistance

    The monetary cost incurred—per unit of distance traveled—for the route length (total travel distance). This attribute can contain null values; a null value indicates zero cost. The unit for this attribute value is specified by the distance_units parameter.

  • OverTimeStartTime

    The duration of regular work time before overtime computation begins. This attribute can contain null values; a null value indicates that overtime does not apply. The unit for this attribute value is specified by the time_units parameter.

    For example, if the driver is to be paid overtime pay when the total route duration extends beyond eight hours, OvertimeStartTime is specified as 480 (8 hours * 60 minutes/hour), given the time_units parameter is set to Minutes.

  • CostPerUnitOvertime

    The monetary cost incurred per time unit of overtime work. This attribute can contain null values; a null value indicates that the CostPerUnitOvertime value is the same as the CostPerUnitTime value. The unit for this attribute value is specified by the time_units parameter.

  • MaxOrderCount

    The maximum allowable number of orders on the route. This attribute can't contain null values and has a default value of 30.

  • MaxTotalTime

    The maximum allowable route duration. The route duration includes travel times as well as service and wait times at orders, depots, and breaks. This attribute can contain null values; a null value indicates that there is no constraint on the route duration. The unit for this attribute value is specified by the time_units parameter.

  • MaxTotalTravelTime

    The maximum allowable travel time for the route. The travel time includes only the time spent driving on the streets and does not include service or wait times. This attribute can contain null values; a null value indicates there is no constraint on the maximum allowable travel time. This attribute value can't be larger than the MaxTotalTime attribute value. The unit for this attribute value is specified by the time_units parameter.

  • MaxTotalDistance

    The maximum allowable travel distance for the route. This attribute can contain null values; a null value indicates that there is no constraint on the maximum allowable travel distance. The unit for this attribute value is specified by the distance_units parameter.

  • SpecialtyNames

    A space-separated string containing the names of the specialties supported by the route. A null value indicates that the route does not support any specialties. This attribute is a foreign key to the SpecialtyNames attribute in the orders parameter, so the values must match.

    To illustrate what specialties are and how they work, assume a lawn care and tree trimming company has a portion of its orders that requires a bucket truck to trim tall trees. The company would specify BucketTruck as the value for the SpecialtyNames attribute for these orders to indicate their special need. SpecialtyNames would be left as null for the other orders. Similarly, the company would also specify BucketTruck as the value for the SpecialtyNames attribute for the routes that are driven by trucks with hydraulic booms. It would leave the attribute value as null for the other routes. When finding the solution, the service assigns orders without special needs to any route, but it only assigns orders that need bucket trucks to routes that have them.

  • AssignmentRule

    Specifies whether the route can be used or not when solving the problem. The attribute value should be specified as one of the following integer values:

    • 0—The route is excluded from the solution.
    • 1—The route is included when finding the solution. This is the default value.

Syntax examples for routes

Syntax for specifying routes using JSON structure for features

{
  "features": [
    {
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying routes using a URL returning a JSON response

{
  "url": "<url>"
}

Example for routes

Example: Specifying routes using JSON structure

Unlike the depots and orders parameters, the spatialReference and geometry properties are not required when specifying the routes parameter. The example also shows how to specify some attributes for the depots.

{
  "features": [
    {
      "attributes": {
        "Name": "Truck1",
        "Capacities": "40000 2000",
        "StartDepotName": "Depot1",
        "EndDepotName": "Depot1",
        "SpecialtyNames": "BucketTruck"
      }
    },
    {
      "attributes": {
        "Name": "Truck2",
        "Capacities": "30000 2500",
        "StartDepotName": "Depot2",
        "EndDepotName": "Depot2",
        "SpecialtyNames": null
      }
    }
  ]
}

token

Use this parameter to specify a token that provides the identity of a user that has the permissions to access the service. The accessing services page provides more information on how such an access token can be obtained.

Example (replace <yourToken> with a valid token):
token=<yourToken>

f

Use this parameter to specify the response format. The parameter can have json or pjson as arguments, for example, f=json. The pjson value is used for printing the JSON response in a pretty format.

Optional parameters

default_date

Use this parameter to specify the date on which all of your routes start.

The parameter value should be specified as a numeric value representing the milliseconds since midnight, January 1, 1970.

Only the date portion of this value will be used; the time-specific portion of the value will be ignored.

You can use the same value that you have specified for the EarliestStartTime attribute for each route feature in the routes parameter. If your routes start on different dates, you can pick any date from one of them.

travel_mode

Choose the mode of transportation for the analysis.

Travel modes are managed in ArcGIS Online and ArcGIS Enterprise and can be configured by the administrator of your organization to better reflect your organization's workflows. You need to specify the JSON object containing the settings for a travel mode supported by your organization. To get a list of supported travel modes, execute the GetTravelModes tool from the Utilities service.

The value for the travel_mode parameter should be a JSON object representing travel mode settings. When you use the GetTravelModes tool from the Utilities service, you get a string representing the travel mode JSON. You need to convert this string to a valid JSON object using your API and then pass the JSON object as the value for the travel_mode parameter.

For example, below is a string representing the Walking Time travel mode as returned by the GetTravelModes tool.

"{\"attributeParameterValues\": [{\"parameterName\": \"Restriction Usage\", \"attributeName\": \"Walking\", \"value\": \"PROHIBITED\"}, {\"parameterName\": \"Restriction Usage\", \"attributeName\": \"Preferred for Pedestrians\", \"value\": \"PREFER_LOW\"}, {\"parameterName\": \"Walking Speed (km/h)\", \"attributeName\": \"WalkTime\", \"value\": 5}], \"description\": \"Follows paths and roads that allow pedestrian traffic and finds solutions that optimize travel time. The walking speed is set to 5 kilometers per hour.\", \"impedanceAttributeName\": \"WalkTime\", \"simplificationToleranceUnits\": \"esriMeters\", \"uturnAtJunctions\": \"esriNFSBAllowBacktrack\", \"restrictionAttributeNames\": [\"Preferred for Pedestrians\", \"Walking\"], \"useHierarchy\": false, \"simplificationTolerance\": 2, \"timeAttributeName\": \"WalkTime\", \"distanceAttributeName\": \"Miles\", \"type\": \"WALK\", \"id\": \"caFAgoThrvUpkFBW\", \"name\": \"Walking Time\"}"

The above value should be converted to a valid JSON object and passed as the value for the travel_mode parameter.

travel_mode={"attributeParameterValues": [{"parameterName": "Restriction Usage","attributeName": "Walking","value": "PROHIBITED"},{"parameterName": "Restriction Usage","attributeName": "Preferred for Pedestrians","value": "PREFER_LOW"},{"parameterName": "Walking Speed (km/h)","attributeName": "WalkTime","value": 5}],"description": "Follows paths and roads that allow pedestrian traffic and finds solutions that optimize travel time. The walking speed is set to 5 kilometers per hour.","impedanceAttributeName": "WalkTime","simplificationToleranceUnits": "esriMeters","uturnAtJunctions": "esriNFSBAllowBacktrack","restrictionAttributeNames": ["Preferred for Pedestrians","Walking"],"useHierarchy": false,"simplificationTolerance": 2,"timeAttributeName": "WalkTime","distanceAttributeName": "Miles","type": "WALK","id": "caFAgoThrvUpkFBW","name": "Walking Time"}

The default value, Custom, allows you to configure your own travel mode. When you pass in Custom, you can set values for the following parameters: impedance, time_impedance, distance_impedance, uturn_at_junctions, use_hierarchy, route_line_simplification_tolerance, restrictions, and attribute_parameter_values. You may want to choose Custom and set the custom travel mode parameters listed above, for example, to model a pedestrian with a fast walking speed or a truck with a given height, weight, and cargo of certain hazardous materials. You may choose to do this to try out different settings to get desired analysis results. Once you have identified the analysis settings, you should work with your organization's administrator and save these settings as part of a new or existing travel mode so that everyone in your organization can rerun the analysis with the same settings.

The default values of the custom travel mode parameters model traveling by car. If you specify the travel mode as Custom or do not provide a value for the travel_mode parameter, the analysis will be similar to using the default Driving Time travel mode.

Caution:

When the travel_mode parameter is not set to Custom, this means you are choosing a travel mode configured by your organization, and the service automatically overrides the values of other parameters with values that model the chosen travel mode. The following parameters are overridden: impedance, time_impedance, distance_impedance, uturn_at_junctions, use_hierarchy, route_line_simplification_tolerance, restrictions, and attribute_parameter_values.

time_zone_usage_for_time_fields

Use this parameter to specify the time zone for the input date-time fields. This parameter specifies the time zone for the following fields: TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, TimeWindowEnd2, InboundArriveTime, and OutboundDepartTime on orders; TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, and TimeWindowEnd2 on depots; EarliestStartTime and LatestStartTime on routes; and TimeWindowStart and TimeWindowEnd on breaks.

  • GEO_LOCAL—The date-time values associated with the orders or depots are in the time zone in which the orders and depots are located. For routes, the date-time values are based on the time zone in which the starting depot for the route is located. If a route does not have a starting depot, all orders and depots across all the routes must be in a single time zone. For breaks, the date-time values are based on the time zone of the routes. For example, if your depot is located in an area that follows eastern standard time and has the first time window values (specified as TimeWindowStart1 and TimeWindowEnd1) of 8 AM and 5 PM, the time window values will be treated as 8:00 a.m. and 5:00 p.m. in eastern standard time.
  • UTC—The date-time values associated with the orders or depots are in the in coordinated universal time (UTC) and are not based on the time zone in which the orders or depots are located. For example, if your depot is located in an area that follows eastern standard time and has the first time window values (specified as TimeWindowStart1 and TimeWindowEnd1) of 8 AM and 5 PM, the time window values will be treated as 3:00 a.m. and 12:00 p.m. in eastern standard time.

impedance

Specify the impedance, which is a value that represents the effort or cost of traveling along road segments or on other parts of the transportation network.

Travel time is an impedance; a car may take one minute to travel a mile along an empty road. Travel times can vary by travel mode—a pedestrian may take more than 20 minutes to walk the same mile, so it is important to choose the right impedance for the travel mode you are modeling.

Travel distance can also be an impedance; the length of a road in kilometers can be thought of as impedance. Travel distance in this sense is the same for all modes—a kilometer for a pedestrian is also a kilometer for a car. (What may change is the pathways on which the different modes are allowed to travel, which affects distance between points, and this is modeled by travel mode settings.)

Caution:

The value you provide for this parameter is ignored unless travel_mode is set to Custom, which is the default value.

Choose from the following impedance values:

  • TravelTime—takes advantage of historical and live traffic data and is good for modeling the time it takes automobiles to travel along roads at a specific time of the day using live traffic speed data where available. When using TravelTime, you can optionally specify the TravelTime::Vehicle Maximum Speed (km/h) attribute parameter to specify the physical limitation of the speed the vehicle is capable of traveling.
  • Minutes—does not use live traffic data but uses the historical average speeds for automobiles.
  • TruckTravelTime—takes advantage of historical and live traffic data, but caps the speed to the posted truck speed limit. This is good for modeling the time it takes for the trucks to travel along roads at a specific time. When using TruckTravelTime, you can optionally specify the TruckTravelTime::Vehicle Maximum Speed (km/h) attribute parameter to specify the physical limitation of the speed the truck is capable of traveling.
  • TruckMinutes—does not use live traffic data but uses the smaller of the historical average speeds for automobiles and the posted speed limits for trucks.
  • WalkTime—defaults to a speed of 5 km/hr on all roads and paths, but this can be configured through the WalkTime::Walking Speed (km/h) attribute parameter.
  • Miles—Stores length measurements along roads in miles and can be used for performing analysis based on shortest distance.
  • Kilometers—Stores length measurements along roads in kilometers and can be used for performing analysis based on shortest distance.
  • TimeAt1KPH—defaults to a speed of 1 km/hr on all roads and paths. The speed cannot be changed using any attribute parameters.

If you choose a time-based impedance, such as TravelTime, TruckTravelTime, Minutes, TruckMinutes, or WalkTime, the measurement_units parameter must be set to a time-based value; if you choose a distance-based impedance such as Miles, Kilometers, the measurement_units must be distance-based.

Legacy:

Drive Time, Truck Time, Walk Time, and Travel Distance impedance values are no longer supported and will be removed in a future release. If you use one of these values, the tool uses the value of the time_impedance parameter for time-based values or distance_impedance parameter for distance-based values.

breaks

Use this parameter to specify the rest periods, or breaks, for the routes in a given vehicle routing problem. A break is associated with exactly one route, and it can be taken after completing an order, while en route to an order, or prior to servicing an order. It has a start time and a duration, for which the driver may or may not be paid. There are three options for establishing when a break begins: using a time window, a maximum travel time, or a maximum work time.

  • Time window break— To set up a time window break, enter two time-of-day values to delimit a time range in which the break should begin. The TimeWindowStart and TimeWindowEnd attributes hold the bounding time-of-day values. The duration, or service time, of the break is independent of the time window and, therefore, can extend beyond the end of the time window. For instance, if the time window for an hour-long break spans from 10:00 a.m. to 10:15 a.m., the break should start after 10:00 a.m. but before 10:15 a.m. If it starts at 10:10 a.m., the break will end at 11:10 a.m.
  • Maximum travel time break—With this kind of break, you specify how long a person can drive before the break is required. (Note that only travel time is limited, not other times such as wait and service times.) If you enter four hours into the first break's MaxTravelTimeBetweenBreaks property, for example, the driver will receive a break before the accumulated travel time from the start of the route exceeds four hours. For any subsequent breaks, the travel time is accumulated from the previous break. So if you have a second break with a MaxTravelTimeBetweenBreaks value of two hours, the second break will be taken before two hours of travel time have been accumulated from the previous break, not from the start depot. A route's final maximum travel time break not only limits the amount of accumulated travel time from the previous break or start of the route but also limits the travel time from the final break to the end depot. This is true even if there is only one break. The VRP service is designed this way to prevent a route from taking all its breaks and then traveling for an extended period without taking another break. In the last example, MaxTravelTimeBetweenBreaks was set to two hours. If this is the route's final break, the route must be able to reach the end depot within two hours of travel time from the final break; otherwise, the service will return an error.
  • Maximum work time break—This break specifies how long a person can work before a break is required. Unlike maximum travel time breaks, which can accumulate travel time from the end of the last break, maximum work time breaks always accumulate work time from the beginning of the route, including any service time at the start depot. Note that this break limits the accumulated work time, which includes travel time and all service times; it excludes wait time, however.

The breaks parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a break and contains the following properties:

  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.
Note:

Unlike the orders or depots parameter, the JSON structure for the breaks parameter does not have a geometry property.

Attributes for breaks

When specifying the breaks, you can specify additional properties for breaks, such as their time windows or duration, using attributes. The breaks parameter can be specified with the following attributes:

  • RouteName

    The name of the route that the break applies to. Although a break is assigned to exactly one route, many breaks can be assigned to the same route. This attribute is a foreign key to the Name attribute in the routes parameter, so the values must match. The attribute cannot have a null value.

  • Precedence

    Specifies the values to sequence the breaks of a given route. Breaks with a precedence value of 1 occur before those with a value of 2, and so on. All breaks must have a precedence value, regardless of whether they are time window, maximum travel time, or maximum work time breaks. The default value for this attribute is 1.

  • ServiceTime

    The duration of the break. The units for this attribute value are specified by the time_units parameter. This attribute can't contain a null value. The default value for this attribute is 60.

  • TimeWindowStart

    The starting time of the break's time window. Specifying this attribute indicates that the service should consider the breaks as time window breaks. The attribute value is specified as a numeric value representing the milliseconds since midnight, January 1, 1970.

    If this attribute is null and the TimeWindowEnd attribute has a valid time-of-day value, the break is allowed to start anytime before the TimeWindowEnd value.

    The default value for this attribute is null.

  • TimeWindowEnd

    The ending time of the break's time window. Specifying this attribute indicates that the service should consider the breaks as time window breaks. The attribute value is specified as a numeric value representing the milliseconds since midnight, January 1, 1970.

    If this attribute is null and the TimeWindowStart attribute has a valid time-of-day value, the break is allowed to start anytime after the TimeWindowStart value.

    The default value for this attribute is null.

    For both the TimeWindowStart and TimeWindowEnd attributes, the time zone is specified by the time_zone_usage_for_time_fields parameter. If the parameter is set to GEO_LOCAL, the time is in the time zone where the route's depot is located. This is useful if your routes span multiple time zones but they all break at a consistent time (for example, 12:00 p.m. in the depot's time zone). If the parameter is set to UTC, the time is based on UTC time. This is useful if you don't know the time zone of an individual route's depot but know the absolute time for each break (for example, the break starts an hour from now).

    Caution:

    If either the TimeWindowStart or the TimeWindowEnd attribute has values, the MaxTravelTimeBetweenBreaks and MaxCumulWorkTime attributes must be null; moreover, all other breaks must have null values for the MaxTravelTimeBetweenBreaks and MaxCumulWorkTime attributes for the request to succeed. The service will also return an error if a route has multiple breaks with overlapping time windows.

  • MaxViolationTime

    Specifies the maximum allowable violation time for a time window break. A time window is considered violated if the arrival time falls outside of the time range. The units for this attribute value are specified by the time_units parameter.

    A zero value indicates the time window cannot be violated; that is, the time window is hard. A nonzero value specifies the maximum amount of lateness; for example, the break can begin up to 30 minutes beyond the end of its time window, but the lateness is penalized as per the time_window_factor parameter. A null value indicates that there is no limit on the allowable violation time.

    Caution:

    For the request to succeed, if MaxTravelTimeBetweenBreaks or MaxCumulWorkTime has a value, MaxViolationTime must be null.

    The default value for this attribute is null.

  • MaxTravelTimeBetweenBreaks

    The maximum amount of travel time that can be accumulated before the break is taken. Specifying this attribute indicates that the service should consider the breaks as travel time breaks. The travel time is accumulated either from the end of the previous break or, if a break has not yet been taken, from the start of the route. If this is the route's final break, this attribute also indicates the maximum travel time that can be accumulated from the final break to the end depot.

    The MaxTravelTimeBetweenBreaks attribute is designed to limit how long a person can drive until a break is required. For instance, if the time_units parameter is set to Minutes, and MaxTravelTimeBetweenBreaks has a value of 120, the driver will get a break after two hours of driving. To assign a second break after two more hours of driving, the second break's MaxTravelTimeBetweenBreaks attribute value should be 120.

    The units for this attribute value are specified by the time_units parameter. The default value for this attribute is null.

    Caution:

    For the request to succeed, if the MaxTravelTimeBetweenBreaks attribute has a value, the TimeWindowStart, TimeWindowEnd, MaxViolationTime, and MaxCumulWorkTime attributes must be null.

  • MaxCumulWorkTime

    The maximum amount of work time that can be accumulated before the break is taken. Specifying this attribute indicates that the service should consider the breaks as work time breaks. Work time is always accumulated from the beginning of the route. Work time is the sum of travel time and service times at orders, depots, and breaks. Note, however, that this excludes wait time, which is the time a route (or driver) spends waiting at an order or depot for a time window to begin.

    The MaxCumulWorkTime attribute is designed to limit how long a person can work until a break is required. For instance, if the time_units parameter is set to Minutes, the MaxCumulWorkTime attribute has a value of 120, and the ServiceTime attribute has a value of 15, the driver will get a 15-minute break after two hours of work. If a second break is needed after three more hours of work, you would specify 315 (five hours and 15 minutes) as the second break's MaxCumulWorkTime value. This number includes the MaxCumulWorkTime and ServiceTime values of the preceding break, along with the three additional hours of work time before granting the second break. To avoid taking maximum work time breaks prematurely, remember that they accumulate work time from the beginning of the route and that work time includes the service time at previously visited depots, orders, and breaks.

    The units for this attribute value are specified by the time_units parameter. The default value for this attribute is null.

    Caution:

    For the request to succeed, if the MaxCumulWorkTime attribute has a value, the TimeWindowStart, TimeWindowEnd, MaxViolationTime, and MaxTravelTimeBetweenBreaks attributes must be null.

  • IsPaid

    Specifies whether the break is paid or unpaid. The attribute value is specified as an integer with possible values being 0 or 1. A value of 1 indicates that the time spent at the break is included in the route cost computation and overtime determination. A value of 0 indicates otherwise. The default value for this attribute is 1.

  • Sequence

    Indicates the relative sequence of the break on its route. The attribute values must be positive and unique for each route but need not start from 1 or be contiguous. In the service output, the Sequence attribute of the out_stops parameter contains the sequence value of the break on its route. This attribute can have null values specifying that the break can be placed anywhere along the route. The default value for this attribute is null.

  • ArriveTimeUTC

    The date and time value indicating the arrival time in UTC time.

  • DepartTimeUTC

    The date and time value indicating the departure time in UTC time.

Syntax examples for breaks

Syntax for specifying breaks using JSON structure for features

{
  "features": [
    {
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying breaks using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for breaks

Example one: Specifying time-window-based breaks using JSON structure

This example shows how to specify time-window-based breaks by specifying the values for the TimeWindowStart and the TimeWindowEnd attributes. The input vehicle routing problem requires that each of three routes have one 30-minute paid break between 12:30 p.m. and 1:30 p.m. The break time window is rigid, so the break has to start between 12:30 p.m. and 1:30 p.m. and cannot start after 1:30 p.m.

You need to specify one break for each route, so you have a total of three features. Specify the appropriate milliseconds since January 1, 1970, for 12:30 p.m. Pacific time on April 23, 2013, as the value for the TimeWindowStart attribute and the appropriate milliseconds since January 1, 1970, for 1:30 p.m. on April 23, 2013, as the value for the TimeWindowEnd attribute. Because the break time window is rigid, specify a value of 0 for the MaxViolationTime attribute. Because the break duration is 30 minutes, specify a value of 30 for the ServiceTime attribute assuming the time_units parameter is set to Minutes. For each break, only specify the attribute values required to model the input scenario. The other attribute values are not specified because their default values are adequate in this scenario.

Note:

Unlike the depots and orders parameters, the spatialReference and geometry properties are not required when specifying the breaks parameter.

{
  "features": [
    {
      "attributes": {
        "RouteName": "Truck1",
        "TimeWindowStart": 1366745400000,
        "TimeWindowEnd": 1366749000000,
        "ServiceTime": 30,
        "MaxViolationTime": 0
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "TimeWindowStart": 1366745400000,
        "TimeWindowEnd": 1366749000000,
        "ServiceTime": 30,
        "MaxViolationTime": 0
      }
    },
    {
      "attributes": {
        "RouteName": "Truck3",
        "TimeWindowStart": 1366745400000,
        "TimeWindowEnd": 1366749000000,
        "ServiceTime": 30,
        "MaxViolationTime": 0
      }
    }
  ]
}

Example two: Specifying travel-time-based breaks using JSON structure

This example shows how to specify travel-time-based breaks by specifying the value for the MaxTravelTimeBetweenBreaks attribute. The input vehicle routing problem requires that the driver for each of the two routes have one 15-minute unpaid break after two hours of driving and another unpaid break after an additional two hours of driving.

You need to specify two breaks for each route, so you have a total of four features. The first break for each route has a precedence value of 1 and the second break has a precedence value of 2. As each break on the route needs to occur after two hours of travel time, specify the MaxTravelTimeBetweenBreaks attribute value as 120 for both breaks on a route assuming that the time_units parameter is set to Minutes. Because the break duration is 15 minutes, specify a value of 15 for the ServiceTime attribute. Because the break is unpaid, specify a value of 0 for the IsPaid attribute. The other attribute values are not specified because their default values are adequate in this scenario.

{
  "features": [
    {
      "attributes": {
        "RouteName": "Truck1",
        "Precedence": 1,
        "ServiceTime": 15,
        "MaxTravelTimeBetweenBreaks": 120,
        "IsPaid": 0
      }
    },
    {
      "attributes": {
        "RouteName": "Truck1",
        "Precedence": 2,
        "ServiceTime": 15,
        "MaxTravelTimeBetweenBreaks": 120,
        "IsPaid": 0
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "Precedence": 1,
        "ServiceTime": 15,
        "MaxTravelTimeBetweenBreaks": 120,
        "IsPaid": 0
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "Precedence": 2,
        "ServiceTime": 15,
        "MaxTravelTimeBetweenBreaks": 120,
        "IsPaid": 0
      }
    }
  ]
}

Example three: Specifying work-time-based breaks using JSON structure

This example shows how to specify work-time-based breaks by specifying the value for the MaxCumulWorkTime attribute. The input vehicle routing problem requires that the driver for each of the two routes have one 15-minute paid break after two hours of work time and a second 15-minute paid break after three hours of work time since the first break.

You need to specify two breaks for each route, so you have a total of four features. The first break for each route has a precedence value of 1 and the second break has a precedence value of 2. Because the first break on each route needs to occur after two hours of work, specify the MaxCumulWorkTime attribute value as 120 for the first break on a route assuming that the time_units parameter is set to Minutes. Because the second break is needed after three more hours of work, specify 315 (five hours and 15 minutes) as the second break's MaxCumulWorkTime value. This number includes the MaxCumulWorkTime and ServiceTime values of the preceding break, along with the three additional hours of work time before granting the second break (120+15+180=315). Because the break duration is 15 minutes, specify a value of 15 for the ServiceTime attribute. The other attribute values are not specified because their default values are adequate in this scenario.

{
  "features": [
    {
      "attributes": {
        "RouteName": "Truck1",
        "Precedence": 1,
        "ServiceTime": 15,
        "MaxCumulWorkTime": 120
      }
    },
    {
      "attributes": {
        "RouteName": "Truck1",
        "Precedence": 2,
        "ServiceTime": 15,
        "MaxCumulWorkTime": 315
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "Precedence": 1,
        "ServiceTime": 15,
        "MaxCumulWorkTime": 120
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "Precedence": 2,
        "ServiceTime": 15,
        "MaxCumulWorkTime": 315
      }
    }
  ]
}

time_units

Use this parameter to specify the time units for all time-based attribute values specified with different parameters. The parameter is specified using one of the following values:

  • Seconds
  • Minutes (default)
  • Hours
  • Days

Many parameters in the vehicle routing problem request have attributes for storing time values, such as ServiceTime for the orders parameter and CostPerUnitTime for the routes parameter. To minimize data entry requirements, these attribute values don't include units. Instead, all time-based attribute values must be entered in the same units, and the time_units parameter is used to specify the units of those values.

Note:

The time-based attributes in the output parameters also use the same units specified by this parameter.

distance_units

Use this parameter to specify the distance units for all distance-based attribute values specified with different parameters. The parameter is specified using one of the following values:

  • Miles (default)
  • Kilometers
  • Feet
  • Yards
  • Meters
  • NauticalMiles

Many parameters in the vehicle routing problem request have attributes for storing distance values, such as MaxTotalDistance and CostPerUnitDistance for the routes parameter. To minimize data entry requirements, these attribute values don't include units. Instead, all distance-based attribute values must be entered in the same units, and the distance_units parameter is used to specify the units of those values.

Note:

The distance-based attributes in the output parameters also use the same units specified by this parameter.

analysis_region

Specify the region in which to perform the analysis.

uturn_policy

Use this parameter to restrict or allow the analysis to make U-turns at junctions.

Caution:

The value of this parameter, regardless of whether you rely on the default or explicitly set a value, is overridden when travel_mode is set to any other value than Custom. The default value for travel_mode is Driving, so unless you set travel_mode to a different value, this parameter value will be overridden.

In order to understand the available parameter values, consider for a moment that a junction is a point where only two streets intersect each other. If three or more streets intersect at a point, it is called as an intersection. A cul-de-sac is a dead-end. The parameter can have the following values:

Parameter ValueDescription

Allowed

U-turns are permitted everywhere. Allowing U-turns implies that the vehicle can turn around at a junction or intersection and double back on the same street.

U-turns are allowed
U-turns are permitted at junctions with any number of adjacent streets.

Allowed only at Intersections and Dead Ends

U-turns are prohibited at junctions where exactly two adjacent streets meet.

U-turns allowed only at intersections and dead-ends
U-turns are permitted only at intersections or dead ends.

Allowed only at Dead Ends

U-turns are prohibited at all junctions and interesections and are permitted only at dead ends.

U-turns allowed only at dead-ends
U-turns are permitted only at dead ends.

Not Allowed

U-turns are prohibited at all junctions, intersections, and dead-ends. Note that even when this parameter value is chosen, a route can still make U-turns at stops. If you wish to prohibit U-turns at a stop, you can set its CurbApproach property to the appropriate value (3).

The default value for this parameter is ALLOW_UTURNS.

time_window_factor

Use this parameter to rate the importance of honoring time windows without causing violations. A time window violation occurs when a route arrives at an order, depot, or break after a time window has closed. The parameter is specified using one of the following values:

  • Low—Places more importance on minimizing drive times and less on arriving at stops on time. You may want to use this value if you have a growing backlog of service requests. For the purpose of servicing more orders in a day and reducing the backlog, you can choose Low even though customers might be inconvenienced with your late arrivals.
  • Medium (default)—Balances the importance of minimizing drive times and arriving within time windows.
  • High—Places more importance on arriving at stops on time than on minimizing drive times. Organizations that make time-critical deliveries or that are very concerned with customer service would choose a value of High.

The vehicle routing problem solution can change according to the value you choose for the time_window_factor parameter. The next two images show the same set of orders and depots; however, the routes are not the same because different time_window_factor values were used. The image on the left shows the route that resulted from the time_window_factor parameter set to Low. The route is short, but it has a time window violation. If time_window_factor is set to High, the route meets all the time windows, but it is longer because it services the order with a time window first.

Low importance
Low importance
High importance
High importance

spatially_cluster_routes

Use this parameter to specify if orders assigned to an individual route are spatially clustered.

A parameter value of true indicates that the orders assigned to an individual route are spatially clustered by automatically creating dynamic seed points for all the routes. Clustering orders usually results in routes that cover a smaller area and don't intersect other routes as much, but the overall cost of the solution could be more. You might want to cluster orders to keep drivers in general neighborhoods or regions that they are familiar with, or you might want to have compartmentalized routes if they are easier for your organization to manage. The default value for this parameter is true.

A parameter value of false indicates that the orders assigned to an individual route are not spatially clustered. Use this value if you have predefined work territories for the routes that are specified using the route_zones parameter.

route_zones

Use this parameter to specify areas that delineate work territories for given routes. A route zone is used to constrain routes to servicing only those orders that fall within or near the specified area. Here are some examples of when route zones may be useful:

  • Some of your employees don't have the required permits to perform work in certain states or communities. You can create a hard route zone so they only visit orders in areas where they meet the requirements.
  • One of your vehicles breaks down frequently, so you want to minimize response time by having it only visit orders that are close to your maintenance garage. You can create a soft or hard route zone to keep the vehicle nearby.

The route_zones parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the route zone geometries. This property is not required if the coordinate values are in the same spatial reference as your network dataset. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See geographic coordinate systems and projected coordinate system to look up WKID values.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a route zone and contains the following properties:

  • geometry—Specifies the route zone geometry. The structure is based on an ArcGIS REST polygon object. A polygon contains an array of rings. The first point of each ring is always the same as the last point. Each point in the ring is represented as an array of numbers containing x- and y-coordinate values at index 0 and 1, respectively.
  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for route_zones

When specifying the route_zones parameter, you can specify additional information about route zones, such as the name of the route to which the route zone applies, using attributes. The route_zones parameter can be specified with the following attributes:

  • RouteName

    The name of the route to which this zone applies. A route zone can have a maximum of one associated route. This attribute is a foreign key to the Name attribute in the routes parameter, so the values must match. The attribute cannot have a null value.

  • IsHardZone

    Specifies if the route zone is hard or soft. The attribute value is specified as an integer with possible values being 0 or 1. A value of 1 indicates that the route zone is hard; that is, an order that falls outside of the route zone area can't be assigned to the route. A value of 0 indicates that such orders can still be assigned, but the cost of servicing the order is weighted by a function that is based on the Euclidean distance from the route zone. Basically, this means that as the straight-line distance from the soft zone to the order increases, the likelihood of the order being assigned to the route decreases.

    Note:

    Even though a route associated with a hard route zone can only service orders inside the route zone, other routes can still enter and service the orders inside the same zone. This is because route zones restrict the route, not the orders. If you want to assign all the orders in an area exclusively to one route, don't use route zones; instead, for all the orders in an area, change the RouteName attribute on the orders parameter to the proper route, and set the AssignmentRule attribute for the orders to 2.

Syntax examples for route_zones

Syntax for specifying route zones using JSON structure for features

{
  "spatialReference": {
    "wkid": <wkid>,
    "latestWkid": <wkid>
  },
  "features": [
    {
      "geometry": {
        "rings": [
          [
            [<x11>,<y11>],
            [<x12>,<y12>],
            [<x11>,<y11>]
          ],
          [
            [<x21>,<y21>],
            [<x22>,<y22>],
            [<x21>,<y21>]
          ]
        ]
      },
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "geometry": {
        "rings": [
          [
            [<x11>,<y11>],
            [<x12>,<y12>],
            [<x11>,<y11>]
          ],
          [
            [<x21>,<y21>],
            [<x22>,<y22>],
            [<x21>,<y21>]
          ]
        ]
      },
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying route zones using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for route_zones

Example one: Specifying route zones using JSON structure

The example shows how to add route zones associated with the routes in a vehicle routing problem. The two routes in the input vehicle routing problem are operated by vans that are only licensed to service orders in a predetermined area and so cannot service orders that are outside of the route zone. Therefore, the IsHardZone attribute value is set to 1 to ensure that the vans are only assigned orders that are within the route zones.

The first zone is a single-part polygon feature made up of four points. The second zone is a two-part polygon feature in which both parts are made up of four points. The barrier geometries are in the spatial reference of the network dataset. Therefore, the spatialReference property is not required.

{
  "features": [
    {
      "geometry": {
        "rings": [
          [
            [-97.0634,32.8442],
            [-97.0554,32.84],
            [-97.0558,32.8327],
            [-97.0638,32.83],
            [-97.0634,32.8442]
          ]
        ]
      },
      "attributes": {
        "RouteName": "East Bay Route",
        "IsHardZone": 1
      }
    },
    {
      "geometry": {
        "rings": [
          [
            [-97.0803,32.8235],
            [-97.0776,32.8277],
            [-97.074,32.8254],
            [-97.0767,32.8227],
            [-97.0803,32.8235]
          ],
          [
            [-97.0871,32.8311],
            [-97.0831,32.8292],
            [-97.0853,32.8259],
            [-97.0892,32.8279],
            [-97.0871,32.8311]
          ]
        ]
      },
      "attributes": {
        "Name": "North Bay Route",
        "IsHardZone": 1
      }
    }
  ]
}

Example two: Specifying route zones using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
  "url": "https://machine.domain.com/webadaptor/rest/services/Network/USA/MapServer/7/query?where=1%3D1&returnGeometry=true&f=json"
}

route_renewals

Use this parameter to specify the intermediate depots that routes can visit to reload or unload the cargo they are delivering or picking up. Specifically, a route renewal links a route to a depot. The relationship indicates the route can renew (reload or unload while en route) at the associated depot.

Route renewals can be used to model scenarios in which a vehicle picks up a full load of deliveries at the starting depot, services the orders, returns to the depot to renew its load of deliveries, and continues servicing more orders. For example, in propane gas delivery, the vehicle may make several deliveries until its tank is nearly or completely depleted, visit a refueling point, and make more deliveries.

Here are a few rules and options to consider when working with route renewals:

  • The reload/unload point, or renewal location, can be different from the start or end depot.
  • Each route can have one or many predetermined renewal locations.
  • A renewal location may be used more than once by a single route.
  • In some cases where there may be several potential renewal locations for a route, the closest available renewal location is chosen by the service.

The route_renewals parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a route renewal and contains the following properties:

  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.
Note:

Unlike the orders or depots parameter, the JSON structure for the route_renewals parameter does not have a geometry property.

Attributes for route_renewals

When specifying the route renewals, you can specify additional properties for route renewals, such as the route name or service time, using attributes. The route_renewals parameter can be specified with the following attributes:

  • DepotName

    The name of the depot where this renewal takes place. This attribute is a foreign key to the Name attribute in the depots parameter, so the values must match. The attribute cannot have a null value.

  • RouteName

    The name of the route that this renewal applies to. This attribute is a foreign key to the Name attribute in the routes parameter, so the values must match. The attribute cannot have a null value.

  • ServiceTime

    The service time for the renewal. This attribute can contain a null value; a null value indicates zero service time. The units for this attribute value are specified by the time_units parameter.

    Note:

    The time taken to load a vehicle at a renewal depot may depend on the size of the vehicle and how full or empty the vehicle is. However, the service time for a route renewal is a fixed value and does not take into account the actual load. Therefore, the renewal service time should be given a value corresponding to a full truckload, an average truckload, or another time estimate of your choice.

  • Sequences

    Specifies one or more sequences of visits to the renewal depot. This attribute can be used to preassign visits to the renewal depot. The attribute value is specified as a space-separated string of sequence values. The attribute can contain a null value; a null value indicates that the service will determine the best sequence to visit the renewal depot.

Syntax examples for route_renewals

Syntax for specifying route renewals using JSON structure for features

{
  "features": [
    {
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying route renewals using a URL returning a JSON response

{
  "url": "<url>"
}

Example for route_renewals

Example: Specifying route renewals using JSON structure

In this example, a distribution company makes deliveries from a central depot using two trucks. Over time, the distribution company also acquired two additional satellite distribution centers. These centers can be used by the trucks to renew their truckload while making their deliveries instead of returning to the main distribution center for renewal. So the new distribution centers are specified as route renewals when solving the vehicle routing problem, and the service selects the best renewal locations that minimize the total cost.

You need to specify two route renewal locations for each route, so you have a total of four route renewal features. You identify the depot location that can be used for renewal using the DepotName attribute. You specify the name of the route the renewal applies to using the RouteName attribute. Because it takes 15 minutes to load the truck at the renewal location, specify 15 as the value for the ServiceTime attribute assuming the time_units parameter is set to Minutes. The other attribute values are not specified because their default values are adequate in this scenario.

Note:

Unlike the depots and orders parameters, the spatialReference and geometry properties are not required when specifying the route_renewals parameter.

{
  "features": [
    {
      "attributes": {
        "RouteName": "Truck1",
        "DepotName": "800 Brush St",
        "ServiceTime": 15
      }
    },
    {
      "attributes": {
        "RouteName": "Truck1",
        "DepotName": "100 Old County Rd",
        "ServiceTime": 15
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "DepotName": "800 Brush St",
        "ServiceTime": 15
      }
    },
    {
      "attributes": {
        "RouteName": "Truck2",
        "DepotName": "100 Old County Rd",
        "ServiceTime": 15
      }
    }
  ]
}

order_pairs

Use this parameter to pair pickup and delivery orders so they are serviced by the same route.

Sometimes it is required that the pickup and delivery for orders be paired. For example, a courier company might need to have a route pick up a high-priority package from one order and deliver it to another without returning to a depot, or sorting station, to minimize delivery time. These related orders can be assigned to the same route with the appropriate sequence by using order pairs. Moreover, restrictions on how long the package can stay in the vehicle can also be assigned; for example, the package might be a blood sample that has to be transported from the doctor's office to the lab within two hours.

Some situations might require two pairs of orders. For example, suppose you want to transport a senior citizen from her home to the doctor and bring her back home. The ride from her home to the doctor is one pair of orders with a desired arrival time at the doctor, while the ride from the doctor back home is another pair with a desired pickup time.

Caution:

For the request to succeed, the first order in the pair must be a pickup order; that is, the value for its DeliveryQuantities attribute must be null. The second order in the pair must be a delivery order; that is, the value for its PickupQuantities attribute must be null. The quantity that is picked up at the first order must agree with the quantity that is delivered at the second order. As a special case, both orders may have zero quantities for scenarios where capacities are not used.

The orders_pairs parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents an order pair and contains the following properties:

  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.
Note:

Unlike the orders or depots parameter, the JSON structure for the order_pairs parameter does not have a geometry property.

Attributes for order_pairs

When specifying the order pairs, you can specify additional properties for order pairs, such as the orders that should be paired together or the maximum transit time using attributes. The order_pairs parameter can be specified with the following attributes:

Note:

The order quantities are not loaded or unloaded at depots.

  • FirstOrderName—The name of the first order of the pair. This attribute is a foreign key to the Name attribute in the orders parameter, so the values must match. The attribute cannot have a null value.
  • SecondOrderName—The name of the second order of the pair. This attribute is a foreign key to the Name attribute in the orders parameter, so the values must match. The attribute cannot have a null value.
  • MaxTransitTime

    The maximum transit time for the pair. The transit time is the duration from the departure time of the first order to the arrival time at the second order. This constraint limits the time-on-vehicle, or ride time, between the two orders. When a vehicle is carrying people or perishable goods, the ride time is typically shorter than that of a vehicle carrying packages or nonperishable goods.

    Excess transit time (measured with respect to the direct travel time between order pairs) can be tracked and weighted by the service. Because of this, you can direct the service to take one of three approaches: minimize the overall excess transit time, regardless of the increase in travel cost for the fleet; find a solution that balances overall violation time and travel cost; and ignore the overall excess transit time and, instead, minimize the travel cost for the fleet. By assigning an importance level for the excess_transit_factor parameter, you are in effect choosing one of these three approaches. Regardless of the importance level, the service will always return an error if the MaxTransitTime attribute value is surpassed.

    This attribute can contain null values; a null value indicates that there is no constraint on the ride time. The default value for this attribute is null.

Syntax examples for order_pairs

Syntax for specifying order pairs using JSON structure for features

{
  "features": [
    {
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying order pairs using a URL returning a JSON response

{
  "url": "<url>"
}

Example for order_pairs

Example: Specifying order pairs using JSON structure

In this example, a paratransit company needs to find the best routes for a fleet of vans to transport people who would otherwise not have access to transportation from their homes to different hospitals for medical appointments.

The hospital and patient locations are specified as the orders parameter. The passengers have to be taken to a predetermined hospital. For each patient-to-hospital pair, add a feature to the order_pairs parameter using patient name as the value for the FirstOrderName attribute and hospital name as the value for the SecondOrderName attribute. The maximum time in minutes that the patients can sit in the van during a one-way trip is specified using the MaxTransitTime attribute.

Note:

Unlike the depots and orders parameters, the spatialReference and geometry properties are not required when specifying the order_pairs parameter.

{
  "features": [
    {
      "attributes": {
        "FirstOrderName": "Mark (Home)",
        "SecondOrderName": "Mark (Doctor)",
        "MaxTransitTime": 30
      }
    },
    {
      "attributes": {
        "FirstOrderName": "Tom (Home)",
        "SecondOrderName": "Tom (Doctor)",
        "MaxTransitTime": 20
      }
    },
    {
      "attributes": {
        "FirstOrderName": "Bob (Home)",
        "SecondOrderName": "Bob (Doctor)",
        "MaxTransitTime": 25
      }
    },
    {
      "attributes": {
        "FirstOrderName": "Tony (Home)",
        "SecondOrderName": "Tony (Doctor)",
        "MaxTransitTime": 15
      }
    }
  ]
}

excess_transit_factor

Use this parameter to rate the importance of reducing excess transit time of order pairs. Excess transit time is the amount of time exceeding the time required to travel directly between the paired orders. Excess time can be caused by driver breaks or travel to intermediate orders and depots.

Calculating excess transit time
Calculating excess transit time

The parameter is specified using one of the following values:

  • Low—The service tries to find a solution that minimizes overall solution cost, regardless of excess transit time. This value is commonly used with courier services. Since couriers transport packages as opposed to people, they don't need to worry about ride time. Using Low allows the couriers to service paired orders in the proper sequence and minimize the overall solution cost.
  • Medium (default)—The service looks for a balance between reducing excess transit time and reducing the overall solution cost.
  • High—The service tries to find a solution with the least excess transit time between paired orders at the expense of increasing the overall travel costs. It makes sense to use this value if you are transporting people between paired orders and you want to shorten their ride time. This is characteristic of taxi services.

The vehicle routing problem solution can change according to the value you choose for the excess_transit_factor parameter. The next two images show the same set of orders and depots; however, the routes are not the same because different excess_transit_factor values were used. The image on the left shows the route that resulted when the excess_transit_factor parameter was set to Low. The overall route is short, but the travel time from the first order to its paired order, the airport, is long. If the excess_transit_factor is set to High, the route reduces the time between the first order and the airport while maintaining the same ride time to the airport for the order on the right; however, the overall cost of the route increases.

Low importance
Low importance (courier)
High importance (taxi)

point_barriers

Use this parameter to specify one or more points that act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets. For example, a point barrier can be used to represent a fallen tree along a street or time delay spent at a railroad crossing.

The point_barriers parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the barrier geometries. This property is not required if the coordinate values are in the same spatial reference as your network dataset. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See geographic coordinate systems and projected and coordinate systems to look up WKID values.
  • features—Specifies an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a point barrier and contains the following properties:

  • geometry—Specifies the barrier geometry as a point containing x and y properties.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for point_barriers

When specifying point barriers, you can set properties for each, such as its name or barrier type, using the following attributes:

  • Name

    The name of the barrier.

  • BarrierType

    Specifies whether the point barrier restricts travel completely or adds time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):

    • 0 (Restriction)—Prohibits travel through the barrier. The barrier is referred to as a restriction point barrier since it acts as a restriction.
      Two maps demonstrate how a restriction point barrier affects finding the best route.
      The map on the left shows the shortest path between two stops without any restriction point barriers. The map on the right has a road that is blocked by a fallen tree, so the shortest path between the same points is longer.
    • 2 (Added Cost)—Traveling through the barrier increases the travel time or distance by the amount specified in the Additional_Time, Additional_Distance, or Additional_Cost field. This barrier type is referred to as an added-cost point barrier.
      Two maps demonstrate how added cost barriers affect finding the best route.
      The map on the left shows the shortest path between two stops without any added cost point barrier. For the map on the right, the travel time from stop 1 to stop 2 would be the same whether going around the north end of the block or the south end; however, since crossing railroad tracks incurs a time penalty (modeled with added cost point barriers), the route with only one railroad crossing is chosen. The cost of crossing the barrier is added to the accumulated travel time of the resulting route.
  • Additional_Time

    The added travel time when the barrier is traversed. This field is applicable only for added-cost barriers and only if the travel mode used for the analysis uses an impedance attribute that is time based.

    This field value must be greater than or equal to zero, and its units are the same as those specified in the Measurement Units parameter.

  • Additional_Distance

    The added distance when the barrier is traversed. This field is applicable only for added-cost barriers and only if the travel mode used for the analysis uses an impedance attribute that is distance based.

    The field value must be greater than or equal to zero, and its units are the same as those specified in the Measurement Units parameter.

  • Additional_Cost

    The added cost when the barrier is traversed. This field is applicable only for added-cost barriers and only if the travel mode used for the analysis uses an impedance attribute that is neither time based nor distance based.

  • FullEdge

    Specifies how the restriction point barriers are applied to the edge elements during the analysis. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

    • 0 (False)—Permits travel on the edge up to the barrier but not through it. This is the default value.
    • 1 (True)—Restricts travel anywhere on the associated edge.

  • CurbApproach

    Specifies the direction of traffic that is affected by the barrier. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

    • 0 (Either side of vehicle)—The barrier affects travel over the edge in both directions.
    • 1 (Right side of vehicle)—Vehicles are only affected if the barrier is on their right side during the approach. Vehicles that traverse the same edge but approach the barrier on their left side are not affected by the barrier.
    • 2 (Left side of vehicle)—Vehicles are only affected if the barrier is on their left side during the approach. Vehicles that traverse the same edge but approach the barrier on their right side are not affected by the barrier.

    Because junctions are points and don't have a side, barriers on junctions affect all vehicles regardless of the curb approach.

    The CurbApproach attribute is designed to work with both types of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider a facility on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach a facility from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at a facility and not have a lane of traffic between the vehicle and the facility, you would choose 1 (Right side of vehicle) in the United States and 2 (Left side of vehicle) in the United Kingdom.

  • Bearing

    The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the BearingTol field.

    Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.

    Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass for example. Bearing also helps the tool determine on which side of the street the point is.

  • BearingTol

    The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the Bearing field. If the value from the Bearing field is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.

    The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when ArcGIS Network Analyst extension attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.

  • NavLatency

    This field is only used in the solve process if Bearing and BearingTol also have values; however, entering a NavLatency value is optional, even when values are present in Bearing and BearingTol. NavLatency indicates how much time is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.

    The time units of NavLatency are the same as the units specified by the timeUnits property of the analysis object.

Syntax examples for point_barriers

Syntax for specifying point_barriers using JSON structure for features

{
  "spatialReference": {
    "wkid": <wkid>,
    "latestWkid": <wkid>
  },
  "features": [
    {
      "geometry": {
        "x": <x1>,
        "y": <y1>
      },
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "geometry": {
        "x": <x2>,
        "y": <y2>
      },
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying point_barriers using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for point_barriers

Example one: Specifying added cost point barrier in the spatial reference of the network dataset using JSON structure.

This example shows how to use an added cost point barrier to model a 5-minute delay at a railroad crossing. The BarrierType attribute is used to specify that the point barrier is of type added cost and the Additional_Time attribute is used to specify the delay in minutes. The barrier geometries are in the spatial reference of the network dataset. Therefore, the spatialReference property is not specified.

{
  "features": [
    {
      "geometry": {
        "x": -122.053461,
        "y": 37.541479
      },
      "attributes": {
        "Name": "Haley St rail road crossing",
        "BarrierType": 2,
        "Additional_Time": 5
      }
    }
  ]
}

Example two: Specifying restriction point barriers in the Web Mercator spatial reference using JSON structure.

This example shows how to use a restriction point barrier to model a road that is blocked by a fallen tree. The barrier geometries are in the Web Mercator spatial reference and not in the spatial reference of the network dataset. Therefore, the spatialReference property is required.

{
  "spatialReference": {
    "wkid": 102100
  },
  "features": [
    {
      "geometry": {
        "x": -13635398.9398,
        "y": 4544699.034400001
      },
      "attributes": {
        "Name": "Fallen tree at 123 Main St",
        "BarrierType": 0
      }
    }
  ]
}

Example three: Specifying point barriers using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
  "url": "https://machine.domain.com/webadaptor/rest/services/NetworkAnalysis/SanDiego/MapServer/21/query?where=1%3D1&outFields=Name&f=json"
}

line_barriers

Use this parameter to specify one or more lines that prohibit travel anywhere the lines intersect the streets. For example, a parade or protest that blocks traffic across several street segments can be modeled with a line barrier. A line barrier can also quickly fence off several roads from being traversed, thereby channeling possible routes away from undesirable parts of the street network.

Two maps demonstrate a line barrier
The map on the left displays the shortest path between two stops. The map on the right shows the shortest path when several streets are blocked by a line barrier.

The line_barriers parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the barrier geometries. This property is not required if the coordinate values are in the same spatial reference as your network dataset. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See geographic coordinate systems and projected coordinate systems to look up WKID values.
  • features—Specifies an array of features. This property is optional. However, either the features or the url property must be specified.

Each feature in the features array represents a line barrier and contains the following properties:

  • geometry—Specifies the barrier geometry. The structure is based on an ArcGIS REST polyline object. A polyline contains an array of paths. Each path is represented as an array of points, and each point in the path is represented as an array of numbers containing x- and y-coordinate values at index 0 and 1, respectively.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for line_barriers

When specifying the line barriers, you can set name and barrier type properties for each using the following attributes:

  • Name

    The name of the barrier.

Syntax examples for line_barriers

Syntax for specifying line barriers using JSON structure for features

{
  "spatialReference": {
    "wkid": <wkid>,
    "latestWkid": <wkid>
  },
  "features": [
    {
      "geometry": {
        "paths": [
          [
            [<x11>,<y11>],
            [<x12>,<y12>]
          ],
          [
            [<x21>,<y21>],
            [<x22>,<y22>]
          ]
        ]
      },
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "geometry": {
        "paths": [
          [
            [<x11>,<y11>],
            [<x12>,<y12>]
          ],
          [
            [<x21>,<y21>],
            [<x22>,<y22>]
          ]
        ]
      },
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying line barriers using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for line_barriers

Example one: Specifying line barriers using JSON structure in Web Mercator spatial reference

The example shows how to add two lines as line barriers to restrict travel on the streets intersected by the lines. Barrier 1 is a single-part line feature made up of two points. Barrier 2 is a two-part line feature. The first part is made up of three points, and the second part is made up of two points. The barrier geometries are in the Web Mercator spatial reference and not in the spatial reference of the network dataset. Therefore, the spatialReference property is required.

{
  "spatialReference": {
    "wkid": 102100
  },
  "features": [
    {
      "geometry": {
        "paths": [
          [
            [-10804823.397,3873688.372],
            [-10804811.152,3873025.945]
          ]
        ]
      },
      "attributes": {
        "Name": "Barrier 1"
      }
    },
    {
      "geometry": {
        "paths": [
          [
            [-10804823.397,3873688.372],
            [-10804807.813,3873290.911],
            [-10804811.152,3873025.945]
          ],
          [
            [-10805032.678,3863358.76],
            [-10805001.508,3862829.281]
          ]
        ]
      },
      "attributes": {
        "Name": "Barrier 2"
      }
    }
  ]
}

Example two: Specifying line barriers using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
  "url": "https://machine.domain.com/webadaptor/rest/services/Network/USA/MapServer/6/query?where=1%3D1&returnGeometry=true&f=json"
}

polygon_barriers

Use this parameter to specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.

The polygon_barriers parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url—Specifies a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • spatialReference—Specifies the spatial reference for the barrier geometries. This property is not required if the coordinate values are in the same spatial reference as your network dataset. If the coordinate values are in a different spatial reference, you need to specify the WKID for the spatial reference. See geographic coordinate systems and projected coordinate systems to look up WKID values.
  • features—Specifies an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents a polygon barrier and contains the following properties:

  • geometry—Specifies the barrier geometry. The structure is based on an ArcGIS REST polygon object. A polygon contains an array of rings. The first point of each ring is always the same as the last point. Each point in the ring is represented as an array of numbers containing x- and y-coordinate values at index 0 and 1, respectively.
  • attributes—Specifies each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.

Attributes for polygon_barriers

When specifying the polygon barriers, you can set properties for each, such as its name or barrier type, using the following attributes:

  • Name

    The name of the barrier.

  • BarrierType

    Specifies whether the barrier restricts travel completely or scales the cost (such as time or distance) for traveling through it. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):

    • 0 (Restriction)—Prohibits traveling through any part of the barrier. The barrier is referred to as a restriction polygon barrier since it prohibits traveling on streets intersected by the barrier. One use of this type of barrier is to model floods covering areas of the street that make traveling on those streets impossible.
      Two maps demonstrate how a restriction polygon barrier affects finding a route between two stops.
      The left side depicts the shortest path between two stops. On the right, a polygon barrier blocks flooded streets, so the shortest path between the same two stops is different.
    • 1 (Scaled Cost)—Scales the time or distance required to travel the underlying streets by a factor specified using the ScaledTimeFactoror ScaledDistanceFactor field. If the streets are partially covered by the barrier, the travel time or distance is apportioned and then scaled. For example, a factor of 0.25 would mean that travel on underlying streets is expected to be four times faster than normal. A factor of 3.0 would mean it is expected to take three times longer than normal to travel on underlying streets. This barrier type is referred to as a scaled-cost polygon barrier. It might be used to model storms that reduce travel speeds in specific regions.
      Two maps demonstrate how a scaled cost polygon barrier affects finding a route between two stops.
      The map on the left shows a route that goes through inclement weather without regard for the effect poor road conditions have on travel time. On the right, a scaled polygon barrier doubles the travel time of the roads covered by the storm. Notice the route still passes through the southern tip of the storm, since it's quicker to spend more time driving slowly through a small part of the storm than driving completely around it. The service uses the modified travel time in calculating the best route; furthermore, the modified travel time is reported as the total travel time in the response.
  • ScaledTimeFactor

    This is the factor by which the travel time of the streets intersected by the barrier is multiplied. The field value must be greater than zero.

    This field is applicable only for scaled-cost barriers and only if the travel mode used for the analysis uses an impedance attribute that is time based.

  • ScaledDistanceFactor

    This is the factor by which the distance of the streets intersected by the barrier is multiplied. The field value must be greater than zero.

    This field is applicable only for scaled-cost barriers and only if the travel mode used for the analysis uses an impedance attribute that is distance based.

  • ScaledCostFactor

    This is the factor by which the cost of the streets intersected by the barrier is multiplied. The field value must be greater than zero.

    This field is applicable only for scaled-cost barriers and only if the travel mode used for the analysis uses an impedance attribute that is neither time based nor distance based.

Syntax examples for polygon_barriers

Syntax for specifying polygon barriers using JSON structure for features

{
  "spatialReference": {
    "wkid": <wkid>,
    "latestWkid": <wkid>
  },
  "features": [
    {
      "geometry": {
        "rings": [
          [
            [<x11>,<y11>],
            [<x12>,<y12>],
            [<x11>,<y11>]
          ],
          [
            [<x21>,<y21>],
            [<x22>,<y22>],
            [<x21>,<y21>]
          ]
        ]
      },
      "attributes": {
        "<field1>": <value11>,
        "<field2>": <value12>
      }
    },
    {
      "geometry": {
        "rings": [
          [
            [<x11>,<y11>],
            [<x12>,<y12>],
            [<x11>,<y11>]
          ],
          [
            [<x21>,<y21>],
            [<x22>,<y22>],
            [<x21>,<y21>]
          ]
        ]
      },
      "attributes": {
        "<field1>": <value21>,
        "<field2>": <value22>
      }
    }
  ]
}

Syntax for specifying polygon barriers using a URL returning a JSON response

{
  "url": "<url>"
}

Examples for polygon_barriers

Example one: Specifying polygon barriers using JSON structure

The example shows how to add two polygons as barriers. The first polygon, named Flood zone, is a restriction polygon barrier that prohibits travel on the underlying streets. The polygon is a single-part polygon feature made up of four points. The second polygon, named Severe weather zone, is a scaled cost polygon barrier that reduces the travel time on underlying streets to one-third of the original value. The polygon is a two-part polygon feature. Both parts are made up of four points.

The barrier geometries are in the spatial reference of the network dataset. Therefore, the spatialReference property is not required.

{
  "features": [
    {
      "geometry": {
        "rings": [
          [
            [-97.0634,32.8442],
            [-97.0554,32.84],
            [-97.0558,32.8327],
            [-97.0638,32.83],
            [-97.0634,32.8442]
          ]
        ]
      },
      "attributes": {
        "Name": "Flood zone",
        "BarrierType": 0
      }
    },
    {
      "geometry": {
        "rings": [
          [
            [-97.0803,32.8235],
            [-97.0776,32.8277],
            [-97.074,32.8254],
            [-97.0767,32.8227],
            [-97.0803,32.8235]
          ],
          [
            [-97.0871,32.8311],
            [-97.0831,32.8292],
            [-97.0853,32.8259],
            [-97.0892,32.8279],
            [-97.0871,32.8311]
          ]
        ]
      },
      "attributes": {
        "Name": "Severe weather zone",
        "BarrierType": 1,
        "Scaled_Time": 3
      }
    }
  ]
}

Example two: Specifying a polygon barrier using a URL

The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.

{
  "url": "https://machine.domain.com/webadaptor/rest/services/Network/USA/MapServer/7/query?where=1%3D1&returnGeometry=true&f=json"
}

use_hierarchy_in_analysis

Specify whether hierarchy should be used when finding the shortest paths.

Caution:

The value of this parameter, regardless of whether you rely on the default or explicitly set a value, is overridden when travel_mode is set to any other value than Custom. The default value for travel_mode is Driving, so unless you set travel_mode to a different value, this parameter value will be overridden.

  • true—Use hierarchy when measuring between points. This is the default value. When hierarchy is used, the tool prefers higher-order streets (such as freeways) to lower-order streets (such as local roads), and can be used to simulate the driver preference of traveling on freeways instead of local roads even if that means a longer trip. This is especially true when finding routes to faraway locations, because drivers on long-distance trips tend to prefer traveling on freeways where stops, intersections, and turns can be avoided. Using hierarchy is computationally faster, especially for long-distance routes, since the tool can determine the best route from a relatively smaller subset of streets.

  • false—Do not use hierarchy when measuring between stops. If hierarchy is not used, the tool considers all the streets and doesn't prefer higher-order streets when finding the route. This is often used when finding short-distance routes within a city.

The default value for this parameter is true.

Caution:

The tool automatically reverts to using hierarchy if the straight-line distance between orders, depots, or orders and depots is greater than 50 miles, even if you have set this parameter to not use hierarchy.

restrictions

Use this parameter to specify which restrictions should be honored by the service. A restriction represents a driving preference or requirement. In most cases, restrictions cause roads or pathways to be prohibited, but they can also cause them to be avoided or preferred. For instance, using an Avoid Toll Roads restriction will result in a route that will include toll roads only when it is absolutely required to travel on toll roads in order to visit a stop. Height Restriction makes it possible to route around any clearances that are lower than the height of your vehicle. If you are carrying corrosive materials on your vehicle, using the Any Hazmat Prohibited restriction prevents hauling the materials along roads where it is marked as illegal to do so.

Caution:

The value for this parameter, regardless of whether you rely on the default or explicitly set a value, is used in the analysis only when the travel_mode parameter is set to Custom.

Note:

Some restrictions are supported only in certain countries. If you specify restriction names that are not available in the country where your input points are located, the service ignores the invalid restrictions and returns warning messages indicating the names for the restrictions that were not considered when performing the analysis.

Note:

Sometimes you need to specify an additional value, the restriction attribute parameter, on a restriction to get the intended results. This value needs to be associated with the restriction name and a restriction parameter using attribute_parameter_values.

The service supports the restriction names listed in the following table:

Restriction NameDescription

Any Hazmat Prohibited

The result will exclude roads where transporting any kind of hazardous material is prohibited.

Avoid Carpool Roads

The result will avoid roads designated exclusively for carpool (high-occupancy) vehicles.

Avoid Express Lanes

The result will avoid roads designated as express lanes.

Avoid Ferries

The result will avoid ferries.

Avoid Gates

The result will avoid roads where there are gates, such as keyed-access or guard-controlled entryways.

Avoid Limited Access Roads

The result will avoid roads designated as limited-access highways.

Avoid Private Roads

The result will avoid roads that are not publicly owned and maintained.

Avoid Roads Unsuitable for Pedestrians

The result will avoid roads that are unsuitable for pedestrians.

Avoid Stairways

The result will avoid all stairways on a pedestrian suitable route.

Avoid Toll Roads

The result will avoid toll roads.

Avoid Toll Roads for Trucks

The result will avoid all toll roads for trucks

Avoid Truck Restricted Roads

The result will avoid roads where trucks are not allowed except when making deliveries.

Avoid Unpaved Roads

The result will avoid roads that are not paved (for example, dirt, gravel, etc.).

Axle Count Restriction

The result will not include roads where trucks with the specified number of axles are prohibited. The number of axles can be specified using the Number of Axles restriction parameter.

Driving a Bus

The result will exclude roads where buses are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving a Taxi

The result will exclude roads where taxis are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving a Truck

The result will exclude roads where trucks are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving an Automobile

The result will exclude roads where automobiles are prohibited. Using this restriction also ensures the route will honor one-way streets.

Driving an Emergency Vehicle

The result will exclude roads where emergency vehicles are prohibited. Using this restriction also ensures the route will honor one-way streets.

Height Restriction

The result will exclude roads where the vehicle height exceeds the maximum allowed height for the road. The vehicle height can be specified using the Vehicle Height (meters) restriction parameter.

Kingpin to Rear Axle Length Restriction

The result will exclude roads where the vehicle kingpin-to-rear-axle length exceeds the maximum allowed for the road. The vehicle's length between the vehicle kingpin and the rear axle can be specified using the Vehicle Kingpin to Rear Axle Length (meters) restriction parameter.

Length Restriction

The result will exclude roads where the vehicle length exceeds the maximum allowed length for the road. The vehicle length can be specified using the Vehicle Length (meters) restriction parameter.

Preferred for Pedestrians

The result prefers paths designated for pedestrians.

Riding a Motorcycle

The result will exclude roads where motorcycles are prohibited. Using this restriction also ensures the route will honor one-way streets.

Roads Under Construction Prohibited

The result will exclude roads that are under construction.

Semi or Tractor with One or More Trailers Prohibited

The result will exclude roads where semis or tractors with one or more trailers are prohibited.

Single Axle Vehicles Prohibited

The result will exclude roads where vehicles with single axles are prohibited.

Tandem Axle Vehicles Prohibited

The result will exclude roads where vehicles with tandem axles are prohibited.

Through Traffic Prohibited

The result will exclude roads where through traffic (non-local) is prohibited.

Truck with Trailers Restriction

The result will exclude roads where trucks with the specified number of trailers on the truck are prohibited. The number of trailers on the truck can be specified using the Number of Trailers on Truck restriction parameter.

Use Preferred Hazmat Routes

The result will prefer roads designated for transporting any kind of hazardous materials.

Use Preferred Truck Routes

The result will prefer roads designated as truck routes, such as the roads that are part of the national network as specified by the National Surface Transportation Assistance Act in the United States, or roads that are designated as truck routes by the state or province, or or roads in an area that are generally more suitable for trucks.

Walking

The result will exclude roads where pedestrians are prohibited.

Weight Restriction

The result will exclude roads where the vehicle weight exceeds the maximum allowed weight for the road. The vehicle weight can be specified using the Vehicle Weight (kilograms) restriction parameter.

Weight per Axle Restriction

The result will exclude roads where the vehicle's weight per axle exceeds the maximum allowed for the road. The vehicle's weight per axle can be specified using the Vehicle Weight per Axle (kilograms) restriction parameter.

Width Restriction

The result will roads where the vehicle width exceeds the maximum allowed for the road. The vehicle width can be specified using the Vehicle Width(meters) restriction parameter.

Legacy:

The Driving a Delivery Vehicle restriction attribute is no longer available. The service will ignore this restriction since it is invalid. To achieve similar results, use the Driving a Truck restriction attribute along with the Avoid Truck Restricted Roads restriction attribute.

The restrictions parameter value is specified as a list of restriction names. A value of null indicates that no restrictions should be used when finding the best route, but only when travel_mode is set to Custom.

restrictions=[Avoid Carpool Roads, Avoid Express Lanes, Avoid Gates, Avoid Private Roads, Avoid Unpaved Roads, Driving an Automobile, Roads Under Construction Prohibited, Through Traffic Prohibited]

Example for restrictions

restrictions=[Driving a Truck, Height Restriction, Length Restriction]

attribute_parameter_values

Use this parameter to specify additional values required by an attribute or restriction, such as to specify whether the restriction prohibits, avoids, or prefers travel on restricted roads. If the restriction is meant to avoid or prefer roads, you can further specify the degree to which they are avoided or preferred using this parameter.

Caution:

The value for this parameter, regardless of whether you rely on the default or explicitly set a value, is used in the analysis only when the travel_mode parameter is set to Custom.

The attributes_parameter_values parameter can be specified using a JSON structure that represents a set of features. The JSON structure can include the following properties:

  • url: Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set. This property is optional. However, either features or url must be specified.
  • features: Specify an array of features. This property is optional. However, either the features or url property must be specified.

Each feature in the features array represents an attribute parameter and contains the following properties:

  • attributes: Specify each attribute as a key-value pair where the key is the name of a given field, and the value is the attribute value for the corresponding field.
Note:

The JSON structure for the attribute_parameter_values parameter does not have a geometry property.

Attributes for attribute_parameter_values

The attribute_parameter_values parameter can be specified with the following attributes:

  • AttributeName: Lists the name of the restriction.
  • ParameterName: Lists the name of the parameter associated with the restriction. A restriction can have one or more ParameterName values based on its intended use, which implies you may need multiple attribute_parameter_values parameters for a single attribute name.
  • ParameterValue: The value for the ParameterName that is used by the service when evaluating the restriction.

Note:

In most cases, the attribute_parameter_values parameter is dependent on the restrictions parameter. The ParameterValue specified as part of attribute_parameter_values is applicable only if the restriction name is specified as the value for the restrictions parameter.

When specifying the attribute_parameter_values parameter, each restriction (listed as AttributeName) has a ParameterName value, Restriction Usage, that specifies whether the restriction prohibits, avoids, or prefers travel on the roads associated with the restriction and the degree to which the roads are avoided or preferred.

The Restriction Usage ParameterName can be assigned any of the following string values or their equivalent numeric values listed within the parentheses:

  • PROHIBITED (-1)—Travel on the roads using the restriction is completely prohibited.
  • AVOID_HIGH (5)—It is very unlikely for the service to include, in the results, roads that are associated with the restriction.
  • AVOID_MEDIUM (2)—It is unlikely for the service to include, in the results, roads that are associated with the restriction.
  • AVOID_LOW (1.3)—It is somewhat unlikely for the service to include, in the results, roads that are associated with the restriction.
  • PREFER_LOW (0.8)—It is somewhat likely for the service to include, in the results, results roads that are associated with the restriction.
  • PREFER_MEDIUM(0.5)—It is likely for the service to include, in the results, roads that are associated with the restriction.
  • PREFER_HIGH (0.2)—It is very likely for the service to include, in the results, roads that are associated with the restriction.

In most cases, you can use the default value, PROHIBITED, for Restriction Usage if the restriction is dependent on a physical vehicle characteristic, such as vehicle height. However, in some cases, the value for Restriction Usage depends on your travel preferences. For example, the Avoid Toll Roads restriction has the default value of AVOID_MEDIUM for the Restriction Usage parameter. This means that when the restriction is used, the service will try to route around toll roads when it can. AVOID_MEDIUM also indicates how important it is to avoid toll roads when finding the best route; it has a medium priority. Choosing AVOID_LOW would put lower importance on avoiding tolls; choosing AVOID_HIGH instead would give it a higher importance and thus make it more acceptable for the service to generate longer routes to avoid tolls. Choosing PROHIBITED would entirely disallow travel on toll roads, making it impossible for a route to travel on any portion of a toll road. Keep in mind that avoiding or prohibiting toll roads, and thus avoiding toll payments, is the objective for some; in contrast, others prefer to drive on toll roads because avoiding traffic is more valuable to them than the money spent on tolls. In the latter case, you would choose PREFER_LOW, PREFER_MEDIUM, or PREFER_HIGH as the value for Restriction Usage. The higher the preference, the farther the service will go out of its way to travel on the roads associated with the restriction.

The following table lists the restriction names and the default restriction parameter values for all the restrictions. The default value for the attribute_parameter_values parameter is the JSON structure containing all the rows from the below table.

Tip:

If you want to use the default value for any restriction, AttributeName, ParameterName, and ParameterValue do not have to be specified as part of the attribute_parameter_values parameter.

AttributeNameParameterNameParameterValue

Any Hazmat Prohibited

Restriction Usage

PROHIBITED

Avoid Carpool Roads

Restriction Usage

PROHIBITED

Avoid Express Lanes

Restriction Usage

PROHIBITED

Avoid Ferries

Restriction Usage

AVOID_MEDIUM

Avoid Gates

Restriction Usage

AVOID_MEDIUM

Avoid Limited Access Roads

Restriction Usage

AVOID_MEDIUM

Avoid Private Roads

Restriction Usage

AVOID_MEDIUM

Avoid Roads Unsuitable for Pedestrians

Restriction Usage

AVOID_HIGH

Avoid Stairways

Restriction Usage

AVOID_HIGH

Avoid Toll Roads

Restriction Usage

AVOID_MEDIUM

Avoid Toll Roads for Trucks

Restriction Usage

AVOID_MEDIUM

Avoid Truck Restricted Roads

Restriction Usage

AVOID_HIGH

Avoid Unpaved Roads

Restriction Usage

AVOID_HIGH

Axle Count Restriction

Number of Axles

0

Restriction Usage

PROHIBITED

Driving a Bus

Restriction Usage

PROHIBITED

Driving a Taxi

Restriction Usage

PROHIBITED

Driving a Truck

Restriction Usage

PROHIBITED

Driving an Automobile

Restriction Usage

PROHIBITED

Driving an Emergency Vehicle

Restriction Usage

PROHIBITED

Height Restriction

Restriction Usage

PROHIBITED

Vehicle Height (meters)

0

Kingpin to Rear Axle Length Restriction

Restriction Usage

PROHIBITED

Vehicle Kingpin to Rear Axle Length (meters)

0

Length Restriction

Restriction Usage

PROHIBITED

Vehicle Length (meters)

0

Preferred for Pedestrians

Restriction Usage

PREFER_LOW

Riding a Motorcycle

Restriction Usage

PROHIBITED

Roads Under Construction Prohibited

Restriction Usage

PROHIBITED

Semi or Tractor with One or More Trailers Prohibited

Restriction Usage

PROHIBITED

Single Axle Vehicles Prohibited

Restriction Usage

PROHIBITED

Tandem Axle Vehicles Prohibited

Restriction Usage

PROHIBITED

Through Traffic Prohibited

Restriction Usage

AVOID_HIGH

Truck with Trailers Restriction

Restriction Usage

PROHIBITED

Number of Trailers on Truck

0

Use Preferred Hazmat Routes

Restriction Usage

PREFER_MEDIUM

Use Preferred Truck Routes

Restriction Usage

PREFER_HIGH

Walking

Restriction Usage

PROHIBITED

WalkTime

Walking Speed (km/h)

5

Weight Restriction

Restriction Usage

PROHIBITED

Vehicle Weight (kilograms)

0

Weight per Axle Restriction

Restriction Usage

PROHIBITED

Vehicle Weight per Axle (kilograms)

0

Width Restriction

Restriction Usage

PROHIBITED

Vehicle Width (meters)

0

Syntax example for attribute_parameter_values

Syntax for specifying attribute_parameter_values
{
    "features": [
        {
            "attributes": {
                "<field1>": <value11>,
                "<field2>": <value12>,
                "<field3>": <value13>

            }
        },
        {
            "attributes": {
                "<field1>": <value21>,
                "<field2>": <value22>,
                "<field3>": <value13>
            }
        }
    ] 
}

Example for attribute_parameter_values

Example: Specifying the vehicle height and weight and a high preference to use designated truck routes

This example shows how to specify the height and weight of the vehicle for use with the height and weight restrictions respectively along with a high preference to include designated truck routes. This results in a route that does not include any roads where the clearance under overpasses or through tunnels is less than the vehicle height. The results will also not include any roads with load limited bridges or local roads that prohibit heavy vehicles if the vehicle weight exceeds the maximum permissible weight. However, the route will include as many roads as possible that are designated as preferred truck routes.

Note that the Restriction Usage ParameterName for the Height Restriction and the Weight Restriction restrictions are not specified since we want to use the default value of PROHIBITED for these restriction parameters.

attribute_parameter_values=
{
    "features": [
        {
            "attributes": {
                "AttributeName": "Height Restriction",
                "ParameterName": "Vehicle Height (meters)",
                "ParameterValue": 4.12
            }
        },
        {
            "attributes": {
                "AttributeName": "Weight Restriction",
                "ParameterName": "Vehicle Weight (kilograms)",
                "ParameterValue": 36287
            }
        },
        {
            "attributes": {
                "AttributeName": "Use Preferred Truck Routes",
                "ParameterName": "Restriction Usage",
                "ParameterValue": "PREFER_HIGH"
            }
        }
    ]
}

populate_route_lines

Use this parameter to specify the shape of the output routes.

A parameter value of true specifies that the output routes will have the exact shape of the underlying streets that are included in the routes. The default value for this parameter is true.

A parameter value of false specifies that no shape is generated for the output routes. You won't be able to generate driving directions if the populate_route_lines parameter is set to false. Use this option if you are only interested in determining the assignment and sequence of orders to the routes and do not want route shapes that follow streets or generate driving directions. Use this option to reduce the time taken by the service to solve the vehicle routing problem, as the service has to perform relatively fewer computations.

route_line_simplification_tolerance

Use this parameter to specify by how much you want to simplify the route geometry returned by the service.

Caution:

The value for this parameter, regardless of whether you rely on the default or explicitly set a value, is used in the analysis only when the travel_mode parameter is set to Custom.

This parameter is relevant only when route_shape is set to True Shape or True Shape with Measures because the other route_shape options cannot be simplified further.

Simplification maintains critical points on a route, such as turns at intersections, to define the essential shape of the route and removes other points. The simplification distance you specify is the maximum allowable offset that the simplified line can deviate from the original line. Simplifying a line reduces the number of vertices that are part of the route geometry. This reduces the overall response size and also improves the performance for drawing the route shapes in applications.

The parameter is specified as a JSON structure that includes the following properties:

  • distance: The simplification distance value.
  • units: The units for the simplification distance value. The property value should be specified as one of the following values: esriCentimeters, esriDecimalDegrees, esriDecimeters, esriFeet, esriInches, esriKilometers, esriMeters, esriMiles, esriMillimeters, esriNauticalMiles, esriPoints, and esriYards.

The default value for the route_line_simplification_tolerance parameter is 10 meters.

Syntax example for route_line_simplification_tolerance

Syntax for specifying route_line_simplification_tolerance
{
    "distance": <value>,
    "units": "<unit>"
}

Example for route_line_simplification_tolerance

Example: Specifying route_line_simplification_tolerance of 10 meters
{
    "distance": 10,
    "units": "esriMeters"
}

populate_directions

Use this parameter to specify whether the service should generate driving directions for each route.

  • true—Generate directions. This is the default value. The directions are configued based on the values for the directions_language, directions_style_name, and directions_distance_units parameters.

  • false—Don't generate directions. The service returns an empty value for the features property within the output_directions output parameter.

directions_language

Use this parameter to specify the language that should be used when generating driving directions. This parameter is used only when the populate_directions parameter is set to true.

The parameter value can be specified using one of the following two- or five-character language codes:

  • ar—Arabic
  • bs—Bosnian
  • ca—Catalan
  • cs—Czech
  • da—Danish
  • de—German
  • el—Greek
  • en—English
  • es—Spanish
  • et—Estonian
  • fi—Finnish
  • fr—French
  • he—Hebrew
  • hi—Hindi
  • hr—Croatian
  • hu—Hungarian
  • id—Indonesian
  • it—Italian
  • ja—Japanese
  • ko—Korean
  • lt—Lithuanian
  • lv—Latvian
  • nb—Norwegian
  • nl—Dutch
  • pl—Polish
  • pt-BR—Brazilian Portuguese
  • pt-PT—European Portuguese
  • ro—Romanian
  • ru—Russian
  • sl—Slovenian
  • sr—Serbian
  • sv—Swedish
  • th—Thai
  • tr—Turkish
  • uk—Ukrainian
  • vi—Vietnamese
  • zh-CN—Simplified Chinese
  • zh-HK—Traditional Chinese (Hong Kong)
  • zh-TW—Traditional Chinese (Taiwan)

The tool first tries to find an exact match for the specified language including any language localization. If an exact match is not found, it tries to match the language family. If a match is still not found, the tool returns the directions using the default language, English. For example, if the directions language is specified as es-MX (Mexican Spanish), the tool will return the directions in Spanish as it supports es language code and not es-MX.

Caution:

If a language supports localization, such as Brazilian Portuguese (pt-BR) and European Portuguese (pt-PT), you should specify the language family and the localization. If you only specify the language family, the tool will not match the language family and instead return directions in the default language, English. For example, if the directions language is specified as pt, the tool will return the directions in English since it cannot decide if the directions should be returned in pt-BR or pt-PT.

directions_style_name

Use this parameter to specify the name of the formatting style for the directions. This parameter is used only when the populate_directions parameter is set to true. The parameter can be specified using the following values:

  • NA Desktop (default)—Generates turn-by-turn directions suitable for printing.
  • NA Navigation—Generates turn-by-turn directions designed for an in-vehicle navigation device.

save_route_data

Use this parameter to specify whether the service should create a zip file that contains a file geodatabase holding the inputs and outputs of the analysis in a format that can be used to share route layers with your portal.

  • true—Saves route data. The route data zip file can be downloaded from the URL provided as part of the output_route_data parameter.

  • false—Don't save route data. This is the default value.

save_output_network_analysis_layer

Use this parameter to specify if the service should save the analysis settings as a network analysis layer file. You cannot directly work with this file even when you open the file in an ArcGIS Desktop application like ArcMap. It is meant to be sent to Esri Technical Support in order to diagnose the quality of results returned from the service.

  • true—Saves network analysis layer file. The file can be downloaded from the URL provided as part of the output_network_analysis_layer parameter.

  • false—Don't save network analysis layer file. This is the default value.

time_impedance

The time-based impedance, which is a value that represents the travel time along road segments or on other parts of the transportation network.

Note:

If the impedance for the travel mode, as specified using the Impedance parameter,

is time based, the value for Time Impedance and Impedance parameters must be identical. Otherwise, the service will return an error.

distance_impedance

The distance-based impedance, which is a value that represents the travel distance along road segments or on other parts of the transportation network.

Note:

If the impedance for the travel mode, as specified using the Impedance parameter,

is distance based, the value for Distance Impedance and Impedance parameters must be identical. Otherwise, the service will return an error.

populate_stop_shapes

Specify if the tool should create the shapes for the output assigned and unassigned stops.

  • True—The output assigned and unassigned stops are created as point features. This can be useful to visualize which stops are assigned to routes and which stops could not be assigned to any routes.

  • False—The output assigned and unassigned stops are created as tables and will not have shapes. This is the default. Use this option only if your application does not have a need to visualize the output stops and can work with just the attributes of the stops.

output_format

Specifies the format in which the output features will be created.

Choose from the following options:

  • Feature Set—The output features will be returned as feature classes and tables. This is the default.
  • JSON File—The output features will be returned as a compressed file containing the JSON representation of the outputs. When this option is specified, the output is a single file (with a .zip extension) that contains one or more JSON files (with a .json extension) for each of the outputs created by the service.
  • GeoJSON File—The output features will be returned as a compressed file containing the GeoJSON representation of the outputs. When this option is specified, the output is a single file (with a .zip extension) that contains one or more GeoJSON files (with a .geojson extension) for each of the outputs created by the service.

Tip:

Specifying file based output format, such asJSON File, is useful when you are calling the service using the REST endpoint of the service. In such cases, returning all the outputs as a single file allows you to download large results that can be generated by the service. For example, if you are working with GenerateOriginDestinationCostMatrix service and you generate a travel matrix with 1,000,000 records, returning such a large output as a Feature Set can cause the service to fail since the service will try to send the entire output in a single attempt. With a file based output, the service sends the output in multiple chunks reducing the possibility of timeouts when returning the outputs.

overrides

Specify additional settings that can influence the behavior of the solver when finding solutions for the network analysis problems.

The value for this parameter needs to be specified in JavaScript Object Notation (JSON). The values can be either a number, Boolean, or a string.

{
"overrideSetting1" : "value1", 
"overrideSetting2" : "value2"
}

The default value for this parameter is no value, which indicates not to override any solver settings.

Overrides are advanced settings that should be used only after careful analysis of the results obtained before and after applying the settings. A list of supported override settings for each solver and their acceptable values can be obtained by contacting Esri Technical Support.

env:outSR

Use this parameter to specify the spatial reference of the geometries, such as the routes or the directions, returned by the service.

The parameter value can be specified as a well-known ID (WKID) for the spatial reference. If env:outSR is not specified, the geometries are returned in the default spatial reference, WGS84. See Geographic coordinate systems and Projected coordinate systems to look up WKID values.

Many of the basemaps provided by ArcGIS Online are in the Web Mercator spatial reference (WKID 102100). Specifying env:outSR=102100 returns the geometries in the Web Mercator spatial reference, which can be drawn on top of the basemaps.

Output parameters

Upon successful execution, the service returns the solution to the specified vehicle routing problem. The solution is made up of the following output parameters:

Tip:

The geometries for the output parameters are returned by default in the WGS84 (wkid: 4326) spatial reference. You can get the geometries in a different spatial reference using the env:outSR parameter when submitting the request or by using the outSR parameter when retrieving any output parameter.

out_stops

This provides information about stops made at depots, orders, and breaks. The information includes which routes make the stops, the arrival and departure times, and the stop sequence.

Note:

When the populate_stop_shapes parameter is set to true, the out_stops parameter returns features with geometries. Otherwise, features are returned only with attributes.

The parameter supports the following fields:

FieldDescription

Name

The name of the stop. The value of this field is the same as the Name field from the input orders, depots, or breaks. You can use the StopType field to determine if the Name field value refers to a depot, an order, or a break.

StopType

Indicates whether the stop represents a depot, an order, or a break. The field value is an integer that can be interpreted in the following ways:

  • 0—The stop is an order.
  • 1—The stop is a depot.
  • 2—The stop is a break.

PickupQuantities

The amount of cargo or number of people to be picked up from a stop. If multiple dimensions are delivered to a stop, each quantity is separated by a space.

The units for the value of this field aren't stored. You should interpret the units according to the way you specified the Quantities field on the input routes and the PickupQuantities and DeliveryQuantities fields on the input orders.

DeliveryQuantities

The amount of cargo or number of people to be delivered to a stop. If multiple dimensions are delivered to a stop, each quantity is separated by a space.

The units for the value of this field aren't stored. You should interpret the units according to the way you specified the Quantities field on the input routes and the PickupQuantities and DeliveryQuantities fields on the input orders.

RouteName

The name of the route to which the stop is assigned.

Sequence

The relative sequence in which the assigned route visits the stop.

FromPrevTravelTime

The elapsed travel time from the route's previous stop to the current stop.

The value is in the units specified by the Time Units parameter.

FromPrevDistance

The distance along the route from the previous stop to the current stop.

The value is in the units specified by the Distance Units parameter.

ArriveCurbApproach

Indicates the side of the vehicle the curb is on when arriving at the stop. A value of 1 means the right side of the vehicle; a value of 2 means the left side.

DepartCurbApproach

Indicates the side of the vehicle the curb is on when departing from the stop. A value of 1 means the right side of the vehicle; a value of 2 means the left side.

ArriveTime

The time of day the route arrives at the stop. The time of day value for this field is in the time zone in which the stop is located.

DepartTime

The time of day the route departs from the stop. The time of day value for this field is in the time zone in which the stop is located.

ArriveTimeUTC

The time of day the route arrives at the stop. This value is in coordinated universal time (UTC).

DepartTimeUTC

The time of day the route departs from the stop. This value is in coordinated universal time (UTC).

WaitTime

The wait time or layover at the stop. For example, a wait time is incurred when a route must wait at an order for a time window to open.

The value is in the units specified by the Time Units parameter.

ViolationTime

The amount of time elapsed from the end of the stop's time window to the arrival of the route vehicle.

The value is in the units specified by the Time Units parameter.

ORIG_FID

The ObjectID of the input order, depot, or break. This field can be used to join attributes from input features.

Tip:

The RouteName and Sequence attributes can be used to create an ordered list of stops for each route.

Syntax example for out_stops

The out_stops parameter is returned as a JSON feature set with following syntax. Unlike the out_routes parameter, the out_stops parameter does not contain spatialReference or geometryType properties because this parameter does not return any geometry information about the stops.

{
  "paramName": "out_stops",
  "dataType": "GPRecordSet",
  "value": {
    "displayFieldName": "",
    "fields": [
      {
        "name": "<field1Name>",
        "type": "<field1Type>",
        "alias": "<field1Alias>",
        "length": "<field1Length>" //length is included only for esriFieldTypeString
      },
      {
        "name": "<field2Name>",
        "type": "<field2Type>",
        "alias": "<field2Alias>",
        "length": "<field2Length>"
      }
    ],
    "features": [
      {
        "attributes": {
          "<field1>": <value11>,
          "<field2>": <value12>
        }
      },
      {
        "attributes": {
          "<field1>": <value21>,
          "<field2>": <value22>
        }
      }
    ],
    "exceededTransferLimit": <true|false>
  }
}

Example for out_stops

The following shows an example of the out_stops parameter.

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
  "paramName": "out_stops",
  "dataType": "GPRecordSet",
  "value": {
    "displayFieldName": "",
    "fields": [
      {
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "Name",
        "type": "esriFieldTypeString",
        "alias": "Name",
        "length": 128
      },
      {
        "name": "PickupQuantities",
        "type": "esriFieldTypeString",
        "alias": "PickupQuantities",
        "length": 128
      },
      {
        "name": "DeliveryQuantities",
        "type": "esriFieldTypeString",
        "alias": "DeliveryQuantities",
        "length": 128
      },
      {
        "name": "StopType",
        "type": "esriFieldTypeSmallInteger",
        "alias": "StopType"
      },
      {
        "name": "RouteName",
        "type": "esriFieldTypeString",
        "alias": "RouteName",
        "length": 128
      },
      {
        "name": "Sequence",
        "type": "esriFieldTypeInteger",
        "alias": "Sequence"
      },
      {
        "name": "FromPrevTravelTime",
        "type": "esriFieldTypeDouble",
        "alias": "FromPrevTravelTime"
      },
      {
        "name": "FromPrevDistance",
        "type": "esriFieldTypeDouble",
        "alias": "FromPrevDistance"
      },
      {
        "name": "ArriveCurbApproach",
        "type": "esriFieldTypeInteger",
        "alias": "ArriveCurbApproach"
      },
      {
        "name": "DepartCurbApproach",
        "type": "esriFieldTypeInteger",
        "alias": "DepartCurbApproach"
      },
      {
        "name": "ArriveTime",
        "type": "esriFieldTypeDate",
        "alias": "ArriveTime",
        "length": 16
      },
      {
        "name": "DepartTime",
        "type": "esriFieldTypeDate",
        "alias": "DepartTime",
        "length": 16
      },
      {
        "name": "WaitTime",
        "type": "esriFieldTypeDouble",
        "alias": "WaitTime"
      },
      {
        "name": "ViolationTime",
        "type": "esriFieldTypeDouble",
        "alias": "ViolationTime"
      },
      {
        "name": "ArriveTimeUTC",
        "type": "esriFieldTypeDate",
        "alias": "ArriveTimeUTC",
        "length": 16
      },
      {
        "name": "DepartTimeUTC",
        "type": "esriFieldTypeDate",
        "alias": "DepartTimeUTC",
        "length": 16
      }
    ],
    "features": [
      {
        "attributes": {
          "ObjectID": 1,
          "Name": "Store_1",
          "PickupQuantities": "",
          "DeliveryQuantities": "1706",
          "StopType": 0,
          "RouteName": "Truck_1",
          "Sequence": 3,
          "FromPrevTravelTime": 7.952569246292114,
          "FromPrevDistance": 2.6272945531949463,
          "ArriveCurbApproach": 0,
          "DepartCurbApproach": 0,
          "ArriveTime": 1355248198164,
          "DepartTime": 1355249698164,
          "WaitTime": 0,
          "ViolationTime": 0,
          "ArriveTimeUTC": 1355276998164,
          "DepartTimeUTC": 1355278498164
        }
      },
      {
        "attributes": {
          "ObjectID": 2,
          "Name": "Store_2",
          "PickupQuantities": "",
          "DeliveryQuantities": "1533",
          "StopType": 0,
          "RouteName": "Truck_2",
          "Sequence": 3,
          "FromPrevTravelTime": 5.654368394985795,
          "FromPrevDistance": 1.5515339440650768,
          "ArriveCurbApproach": 0,
          "DepartCurbApproach": 0,
          "ArriveTime": 1355248059340,
          "DepartTime": 1355249439341,
          "WaitTime": 0,
          "ViolationTime": 0,
          "ArriveTimeUTC": 1355276859340,
          "DepartTimeUTC": 1355278239341
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

out_routes

The provides access to the drivers, vehicles, and route paths of a vehicle routing problem analysis.

The populate_route_lines and route_line_simplification_tolerance parameters highly influence the shape of the output routes.

The parameter supports the following fields:

FieldDescription

Name

The name of the route. The values for this field are copied from the Name field on the input routes.

ViolationConstraints

Contains a summary of constraints that are violated when assigning the order to any of the routes. The analysis assigns a unique integer for each violated constraint. The ViolatedConstraints field value is an integer representing the sum of all the constraints that are violated by the route. To determine the individual constraints that are violated, you can treat the field value as a bit mask and derive the values for the individual bits. For instance, the combination of Capacities exceeded (2) and Hard route zone (128) is coded as 130 (2 +128).

If a route causes a constraint to be violated, a combination of one or more of the violations listed below can be assigned to the ViolatedConstraints field:

  • MaxOrderCount exceeded (1)—The preassigned orders can't be assigned to the route, since assigning the orders would exceed the maximum number of orders that can be assigned to the route as specified by the MaxOrderCount field on the input routes.
  • Capacities exceeded (2)—The preassigned orders can't be assigned to the route, since assigning the orders would exceed the total route capacity as specified by the Capacities field on the input routes.
  • MaxTotalTime exceeded (4)—The travel time from the start depot to the end depot plus the service and wait times at both depots and any break exceed the total time for the route as specified by the MaxTotalTime field on the input routes.
  • MaxTotalTravelTime exceeded (8)—The travel time from the start depot to the end depot exceeds the total travel time for the route as specified by the MaxTotalTravelTime field on the input routes.
  • MaxTotalDistance exceeded (16)—The travel distance from the start depot to the end depot exceeds the total travel distance for the route as specified by the MaxTotalDistance field on the input routes.
  • Hard time window (32)—There is a hard time window violation on the start depot, end depot, or break associated with the route.
  • Unmatched speciality (64)—The specialties required by an order are not found on the target route.
  • Hard route zone (128)—An order that was preassigned to the route does not fall within a hard route zone.
  • Order pair MaxTransitTime exceeded (256)—An order pair is preassigned to the route, and assigning the orders in the order pair would exceed the maximum transit time for the order pair as specified by the MaxTransitTime field on the input order pairs.
  • Order pair violation (512)—An order belongs to an order pair and can't be assigned to the preassigned route.
  • Unreachable (1024)—A preassigned order is located on a street that cannot be reached by the route.
  • Cannot insert required break (2048)—A break for the route has a null sequence value in the presence of preassigned orders, and the break can't be inserted anywhere without introducing other violations.
  • MaxTravelTimeBetweenBreaks exceeded (8192)—The solver was unable to insert a break within the time specified by the MaxTravelTimeBetweenBreaks field on the input breaks. This is often caused by preassigning a sequence to a break such that it can't be reached within the maximum travel time.
  • Break MaxCumulWorkTime exceeded (16384)—The service was unable to insert a break within the time specified by the MaxCumulWorkTime field on the input breaks. This is often caused by preassigning a sequence to a break such that it can't be reached within the maximum work time.

OrderCount

The number of orders assigned to the route.

TotalCost

The total operating cost of the route, which is the sum of the following field values: FixedCost, RegularTimeCost, OvertimeCost, and DistanceCost.

RegularTimeCost

The cost of regular work time, excluding any unpaid breaks.

OvertimeCost

The cost of overtime work, excluding any unpaid breaks.

DistanceCost

The distance cost component obtained by multiplying the TotalDistance and CostPerUnitDistance field values.

TotalTime

The total route duration. This includes travel times as well as service and wait times at orders, depots, and breaks. The TotalTime value is the sum of the following attribute fields:

  • StartDepotServiceTime
  • EndDepotServiceTime
  • TotalOrderServiceTime
  • TotalBreakServiceTime
  • TotalRenewalServiceTime
  • TotalWaitTime
  • TotalTravelTime

The value is in the units specified by the Time Units parameter.

TotalOrderServiceTime

The total service time spent at all orders on the route.

The value is in the units specified by the Time Units parameter.

TotalBreakServiceTime

The total service time spent at all breaks on the route.

The value is in the units specified by the Time Units parameter.

TotalTravelTime

The total travel time for the route.

The value is in the units specified by the Time Units parameter.

TotalDistance

The total travel distance for the route.

The value is in the units specified by the Distance Units parameter.

StartTime

The starting time of the route. The route may start before the beginning of its start depot's time window, in which case there is a wait time at the starting depot. The time of day value for this attribute is in the time zone in which the starting depot is located.

EndTime

The ending time of the route. The route ends upon completion of service at the ending depot. The time of day value for this attribute is in the time zone in which the ending depot is located.

StartTimeUTC

The start time of the route in coordinated universal time (UTC).

EndTimeUTC

The end time of the route in coordinated universal time (UTC).

TotalWaitTime

The total wait time at all orders, depots, and breaks on the route.

The value is in the units specified by the Time Units parameter.

TotalViolationTime

The total violation time at all orders and breaks on the route.

The value is in the units specified by the Time Units parameter.

RenewalCount

For a route with renewals, this is equal to the number of visits to depots for the purpose of renewing a vehicle, that is, loading or unloading a vehicle.

TotalRenewalServiceTime

For a route with renewals, this is the total service time spent at all renewal visits on the route.

The value is in the units specified by the Time Units parameter.

Syntax example for out_routes

The out_routes parameter is returned as a JSON feature set with following syntax:

{
  "paramName": "out_Routes",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": <wkid>,
      "latestWkid": <wkid>
    },
    "fields": [
      {
        "name": "<field1Name>",
        "type": "<field1Type>",
        "alias": "<field1Alias>",
        "length": "<field1Length>" //length is included only for esriFieldTypeString
      },
      {
        "name": "<field2Name>",
        "type": "<field2Type>",
        "alias": "<field2Alias>",
        "length": "<field2Length>"
      }
    ],
    "features": [
      {
        "geometry": {
          "paths": [
            [
              [<x11>,<y11>],
              [<x12>,<y12>]
            ],
            [
              [<x21>,<y21>],
              [<x22>,<y22>]
            ]
          ]
        },
        "attributes": {
          "<field1>": <value11>,
          "<field2>": <value12>
        }
      },
      {
        "geometry": {
          "paths": [
            [
              [<x11>,<y11>],
              [<x12>,<y12>]
            ],
            [
              [<x21>,<y21>],
              [<x22>,<y22>]
            ]
          ]
        },
        "attributes": {
          "<field1>": <value21>,
          "<field2>": <value22>
        }
      }
    ],
    "exceededTransferLimit": <true|false>
  }
}

Example for out_routes

The following shows an example of the out_routes parameter.

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
  "paramName": "out_routes",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": 4326,
      "latestWkid": 4326
    },
    "fields": [
      {
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "Name",
        "type": "esriFieldTypeString",
        "alias": "Name",
        "length": 128
      },
      {
        "name": "ViolatedConstraints",
        "type": "esriFieldTypeInteger",
        "alias": "ViolatedConstraints"
      },
      {
        "name": "OrderCount",
        "type": "esriFieldTypeInteger",
        "alias": "OrderCount"
      },
      {
        "name": "TotalCost",
        "type": "esriFieldTypeDouble",
        "alias": "TotalCost"
      },
      {
        "name": "RegularTimeCost",
        "type": "esriFieldTypeDouble",
        "alias": "RegularTimeCost"
      },
      {
        "name": "OvertimeCost",
        "type": "esriFieldTypeDouble",
        "alias": "OvertimeCost"
      },
      {
        "name": "DistanceCost",
        "type": "esriFieldTypeDouble",
        "alias": "DistanceCost"
      },
      {
        "name": "TotalTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalTime"
      },
      {
        "name": "TotalOrderServiceTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalOrderServiceTime"
      },
      {
        "name": "TotalBreakServiceTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalBreakServiceTime"
      },
      {
        "name": "TotalTravelTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalTravelTime"
      },
      {
        "name": "TotalDistance",
        "type": "esriFieldTypeDouble",
        "alias": "TotalDistance"
      },
      {
        "name": "StartTime",
        "type": "esriFieldTypeDate",
        "alias": "StartTime",
        "length": 16
      },
      {
        "name": "EndTime",
        "type": "esriFieldTypeDate",
        "alias": "EndTime",
        "length": 16
      },
      {
        "name": "TotalWaitTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalWaitTime"
      },
      {
        "name": "TotalViolationTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalViolationTime"
      },
      {
        "name": "RenewalCount",
        "type": "esriFieldTypeInteger",
        "alias": "RenewalCount"
      },
      {
        "name": "TotalRenewalServiceTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalRenewalServiceTime"
      },
      {
        "name": "Shape_Length",
        "type": "esriFieldTypeDouble",
        "alias": "Shape_Length"
      }
    ],
    "features": [
      {
        "attributes": {
          "ObjectID": 1,
          "Name": "Truck_1",
          "ViolatedConstraints": null,
          "OrderCount": 2,
          "TotalCost": 55.12577115597857,
          "RegularTimeCost": 32.368821966275576,
          "OvertimeCost": 0,
          "DistanceCost": 22.756949189702993,
          "TotalTime": 161.84410983137786,
          "TotalOrderServiceTime": 49,
          "TotalBreakServiceTime": 0,
          "TotalTravelTime": 52.844109831377864,
          "TotalDistance": 15.171299459801997,
          "StartTime": 1355241600000,
          "EndTime": 1355251310647,
          "TotalWaitTime": 0,
          "TotalViolationTime": 0,
          "RenewalCount": 0,
          "TotalRenewalServiceTime": 0,
          "Shape_Length": 0.27770417275136994
        },
        "geometry": {
          "paths": [
            [
              [-122.39476499860575,37.79623499914595],
              [-122.39486000028876,37.79632999992958]
            ],
            [
              [-122.46491587646648,37.77469887205535],
              [-122.4648300002043,37.77348999976374]
            ]
          ]
        }
      },
      {
        "attributes": {
          "ObjectID": 2,
          "Name": "Truck_2",
          "ViolatedConstraints": null,
          "OrderCount": 2,
          "TotalCost": 58.98111973045911,
          "RegularTimeCost": 31.262990736961367,
          "OvertimeCost": 0,
          "DistanceCost": 27.71812899349775,
          "TotalTime": 156.31495368480682,
          "TotalOrderServiceTime": 43,
          "TotalBreakServiceTime": 0,
          "TotalTravelTime": 53.314953684806824,
          "TotalDistance": 18.478752662331832,
          "StartTime": 1355241600000,
          "EndTime": 1355250978897,
          "TotalWaitTime": 0,
          "TotalViolationTime": 0,
          "RenewalCount": 0,
          "TotalRenewalServiceTime": 0,
          "Shape_Length": 0.30798071724323045
        },
        "geometry": {
          "paths": [
            [
              [-122.39476499860575,37.79623499914595],
              [-122.39486000028876,37.79632999992958]
            ],
              [-122.47389692820065,37.74313425554152],
              [-122.47462999977466,37.74310000036479]
            ]
          ]
        }
      },
      {
        "attributes": {
          "ObjectID": 3,
          "Name": "Truck_3",
          "ViolatedConstraints": null,
          "OrderCount": 2,
          "TotalCost": 59.96986647554318,
          "RegularTimeCost": 28.12653774395585,
          "OvertimeCost": 0,
          "DistanceCost": 31.843328731587327,
          "TotalTime": 140.63268871977925,
          "TotalOrderServiceTime": 38,
          "TotalBreakServiceTime": 0,
          "TotalTravelTime": 42.63268871977925,
          "TotalDistance": 21.228885821058217,
          "StartTime": 1355241600000,
          "EndTime": 1355250037961,
          "TotalWaitTime": 0,
          "TotalViolationTime": 0,
          "RenewalCount": 0,
          "TotalRenewalServiceTime": 0,
          "Shape_Length": 0.3486039472893737
        },
        "geometry": {
          "paths": [
            [
              [-122.39476499860575,37.79623499914595],
              [-122.39486000028876,37.79632999992958]
            ],
            [
              [-122.44930025350385,37.731549383197546],
              [-122.45112999974964,37.73153999967133]
            ]
          ]
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

out_directions

This provides access to the turn-by-turn directions for each resulting route.

The following table lists the fields that are returned for output directions:

FieldDescription

RouteName

The name of the route to which the driving action applies. This value is the same as the Name field of the output routes.

ArriveTime

The time of day to initiate the given driving action. If the route spans multiple days, the date and time of day are displayed.

Type

The type of maneuver that the directions feature represents or the type of the directions text. To determine whether Type refers to a maneuver type or a directions string type, check the value of the SubItemType field.

Type can be used, for example, to assign an icon for direction text based on the maneuver type, or it can use a formatting style based on the directions string type when displaying the driving directions in your application.

The Type value is an integer from the Maneuver Types or Directions String Types lists below.

Maneuver Types

  • 0: Unknown
  • 1: Arrive at Stop
  • 2: Go straight
  • 3: Bear left
  • 4: Bear right
  • 5: Turn left
  • 6: Turn right
  • 7: Make sharp left
  • 8: Make sharp right
  • 9: Make U-turn
  • 10: Take ferry
  • 11: Take roundabout
  • 12: Merge to highway
  • 13: Exit highway
  • 14: Go on another highway
  • 15: At fork keep center
  • 16: At fork keep left
  • 17: At fork keep right
  • 18: Depart stop
  • 19: Trip planning item
  • 20: End of ferry
  • 21: Ramp right
  • 22: Ramp left
  • 23: Turn left and immediately turn right
  • 24: Turn right and immediately turn left
  • 25: Turn right and immediately turn right
  • 26: Turn left and immediately turn left

Directions String Types

  • 0: General directions string type
  • 1: Depart directions string type
  • 2: Arrive directions string type
  • 3: Length directions string type
  • 4: Time directions string type
  • 5: Time summary directions string type
  • 6: Time Window directions string type
  • 7: Violation Time directions string type
  • 8: Wait Time directions string type
  • 9: Service Time directions string type
  • 10: Estimated Arrival Time directions string type
  • 11: Cumulative Length directions string type
  • 12: Street name directions string type
  • 13: Alternate street name directions string type
  • 14: Sign branch information directions string type
  • 15: Sign toward information directions string type
  • 16: Cross street name directions string type
  • 17: Sign exit number directions string type

SubItemType

Specifies whether the Type field refers to an integer from the Directions String Types table or the Maneuver Types table.

  • If the SubItemType value is 1, the Type refers to the values from the Maneuver Types table.
  • If the SubItemType value is 2, the Type refers to the values from the Directions String Types table.

Text

A text description of the travel directions.

ElaspsedTime

The time elapsed in minutes from when the current driving direction starts until the next one starts, or until the route ends for the last driving direction.

DriveDistance

The distance from where the current driving direction occurs to where the next one occurs, or to where the route ends for the last driving direction.

The value is in the units specified by the Directions_Distance_Units parameter.

This value is zero for driving directions that occur at the same location where the next one begins. For example, the DriveDistance is 0 for the directions text at the start of the route.

Syntax example for out_directions

The out_directions parameter is returned as a JSON feature set with following syntax:

Caution:

When using the asynchronous execution mode, the service can only return a maximum of 200,000 features with the out_directions parameter. The limit is 10,000 features when using the synchronous execution mode. If this limit is exceeded, the exceededTransferLimit property is set to true.

{
  "paramName": "out_directions",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": <wkid>,
      "latestWkid": <wkid>,
    },
    "fields": [
      {
        "name": "<field1Name>",
        "type": "<field1Type>",
        "alias": "<field1Alias>",
        "length": "<field1Length>" //length is included only for esriFieldTypeString
      },
      {
        "name": "<field2Name>",
        "type": "<field2Type>",
        "alias": "<field2Alias>",
        "length": "<field2Length>"
      }
    ],
    "features": [
      {
        "geometry": {
          "paths": [
            [
              [
                <x11>,
                <y11>
              ],
              [
                <x12>,
                <y12>
              ]
            ],
            [
              [
                <x21>,
                <y21>
              ],
              [
                <x22>,
                <y22>
              ]
            ]
          ]
        },
        "attributes": {
          "<field1>": <value11>,
          "<field2>": <value12>
        }
      },
      {
        "geometry": {
          "paths": [
            [
              [
                <x11>,
                <y11>
              ],
              [
                <x12>,
                <y12>
              ]
            ],
            [
              [
                <x21>,
                <y21>
              ],
              [
                <x22>,
                <y22>
              ]
            ]
          ]
        },
        "attributes": {
          "<field1>": <value21>,
          "<field2>": <value22>
        }
      }
    ],
    "exceededTransferLimit": <true|false>
  }
}

Example for out_directions

The following shows an example of the out_directions parameter:

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
  "paramName": "out_directions",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": 4326,
      "latestWkid": 4326
    },
    "fields": [
      {
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "RouteName",
        "type": "esriFieldTypeString",
        "alias": "RouteName",
        "length": 128
      },
      {
        "name": "ArriveTime",
        "type": "esriFieldTypeDate",
        "alias": "ArriveTime",
        "length": 16
      },
      {
        "name": "Type",
        "type": "esriFieldTypeSmallInteger",
        "alias": "Type"
      },
      {
        "name": "SubItemType",
        "type": "esriFieldTypeSmallInteger",
        "alias": "SubItemType"
      },
      {
        "name": "Text",
        "type": "esriFieldTypeString",
        "alias": "Text",
        "length": 255
      },
      {
        "name": "ElapsedTime",
        "type": "esriFieldTypeSingle",
        "alias": "ElapsedTime"
      },
      {
        "name": "DriveDistance",
        "type": "esriFieldTypeSingle",
        "alias": "DriveDistance"
      },
      {
        "name": "Shape_Length",
        "type": "esriFieldTypeDouble",
        "alias": "Shape_Length"
      }
    ],
    "features": [
      {
        "attributes": {
          "ObjectID": 1,
          "RouteName": "Truck_1",
          "ArriveTime": 1355241600000,
          "Type": 18,
          "SubItemType": 1,
          "Text": "Start at San Francisco",
          "ElapsedTime": 60,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 2,
          "RouteName": "Truck_1",
          "ArriveTime": 1355241600000,
          "Type": 6,
          "SubItemType": 2,
          "Text": "Time Window: 12/11/2012 4:00 PM - 12/12/2012 1:00 AM",
          "ElapsedTime": 60,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 3,
          "RouteName": "Truck_1",
          "ArriveTime": 1355241600000,
          "Type": 9,
          "SubItemType": 2,
          "Text": "Service Time: 1 hr ",
          "ElapsedTime": 60,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 4,
          "RouteName": "Truck_1",
          "ArriveTime": 1355245200000,
          "Type": 2,
          "SubItemType": 1,
          "Text": "Go northwest on THE EMBARCADERO (HERB CAEN WAY)",
          "ElapsedTime": 1.015078,
          "DriveDistance": 0.2596097,
          "Shape_Length": 0.004134325550916659
        },
        "geometry": {
          "paths": [
            [
              [
                -122.39476499860575,
                37.79623499914595
              ],
              [
                -122.3955800002168,
                37.79708999990362
              ]
            ]
          ]
        }
      },
      {
        "attributes": {
          "ObjectID": 5,
          "RouteName": "Truck_1",
          "ArriveTime": 1355245260905,
          "Type": 5,
          "SubItemType": 1,
          "Text": "Turn left on BROADWAY",
          "ElapsedTime": 3.704131,
          "DriveDistance": 0.7392571,
          "Shape_Length": 0.013397827315874893
        },
        "geometry": {
          "paths": [
            [
              [
                -122.39755000023229,
                37.79928999973373
              ],
              [
                -122.39792999976964,
                37.799070000380254
              ]
            ]
          ]
        }
      },
      {
        "attributes": {
          "ObjectID": 14,
          "RouteName": "Truck_1",
          "ArriveTime": 1355246407621,
          "Type": 1,
          "SubItemType": 1,
          "Text": "Arrive at Store_3, on the left",
          "ElapsedTime": 24,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 15,
          "RouteName": "Truck_1",
          "ArriveTime": 1355246407621,
          "Type": 6,
          "SubItemType": 2,
          "Text": "Time Window: 12/11/2012 5:00 PM - 12/12/2012 1:00 AM",
          "ElapsedTime": 24,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 16,
          "RouteName": "Truck_1",
          "ArriveTime": 1355246407621,
          "Type": 9,
          "SubItemType": 2,
          "Text": "Service Time: 24 min",
          "ElapsedTime": 24,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 17,
          "RouteName": "Truck_1",
          "ArriveTime": 1355247847621,
          "Type": 18,
          "SubItemType": 1,
          "Text": "Depart Store_3",
          "ElapsedTime": 0,
          "DriveDistance": 0,
          "Shape_Length": 0
        }
      },
      {
        "attributes": {
          "ObjectID": 18,
          "RouteName": "Truck_1",
          "ArriveTime": 1355247847621,
          "Type": 2,
          "SubItemType": 1,
          "Text": "Continue south on 7TH AVE",
          "ElapsedTime": 0.5039461,
          "DriveDistance": 0.08350408,
          "Shape_Length": 0.001211918705951693
        },
        "geometry": {
          "paths": [
            [
              [
                -122.46491587646648,
                37.77469887205535
              ],
              [
                -122.4648300002043,
                37.77348999976374
              ]
            ]
          ]
        }
      },
      {
        "attributes": {
          "ObjectID": 19,
          "RouteName": "Truck_1",
          "ArriveTime": 1355247877858,
          "Type": 6,
          "SubItemType": 1,
          "Text": "Turn right on FULTON ST",
          "ElapsedTime": 7.81348,
          "DriveDistance": 2.474024,
          "Shape_Length": 0.04514114889321549
        },
        "geometry": {
          "paths": [
            [
              [
                -122.4648300002043,
                37.77348999976374
              ],
              [
                -122.46588000006193,
                37.773380000087
              ]
            ]
          ]
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

out_unassigned_stops

This provides access to the orders that couldn't be visited by any routes. You can also determine why the orders couldn't be visited and make the necessary changes to correct the problem.

Note:

When the populate_stop_shapes parameter is set to true, the out_stops parameter returns features with geometries. Otherwise, features are returned only with attributes.

The parameter supports the following fields:

FieldDescription

StopType

Indicates whether the stop represents a depot, an order, or a break. The field value is an integer that can be interpreted in the following ways:

  • 0—The stop is an order.
  • 1—The stop is a depot.
  • 2—The stop is a break.

Name

The name of the stop. The value of this field is the same as the Name field from input orders, depots, or breaks. You can use the StopType field to determine if the Name field value refers to a depot, an order, or a break.

ViolationConstraints

Contains a summary of constraints that are violated when assigning the order to any of the routes. The analysis assigns a unique integer for each violated constraint. The ViolatedConstraints field value is an integer representing the sum of all the constraints that are violated by the route. To determine the individual constraints that are violated, you can treat the field value as a bit mask and derive the values for the individual bits. For instance, the combination of Capacities exceeded (2) and Hard route zone (128) is coded as 130 (2 +128).

If an order causes a constraint to be violated, a combination of one or more of the violations listed below can be assigned to the ViolatedConstraints field:

  • MaxOrderCount exceeded (1)—The preassigned orders can't be assigned to the route, since assigning the orders would exceed the maximum number of orders that can be assigned to the route as specified by the MaxOrderCount field of the input routes.
  • Capacities exceeded (2)—The preassigned orders can't be assigned to the route, since assigning the orders would exceed the total route capacity as specified by the Capacities field of the input routes.
  • MaxTotalTime exceeded (4)—The travel time from the start depot to the end depot plus the service and wait times at both depots and any break exceed the total time for the route as specified by the MaxTotalTime field of the input routes.
  • MaxTotalTravelTime exceeded (8)—The travel time from the start depot to the end depot exceeds the total travel time for the route as specified by the MaxTotalTravelTime field of the input routes.
  • MaxTotalDistance exceeded (16)—The travel distance from the start depot to the end depot exceeds the total travel distance for the route as specified by the MaxTotalDistance field of the input routes.
  • Hard time window (32)—There is a hard time window violation on the start depot, end depot, or break associated with the route.
  • Unmatched speciality (64)—The specialties required by an order are not found on the target route.
  • Hard route zone (128)—An order that was preassigned to the route does not fall within a hard route zone.
  • Order pair MaxTransitTime exceeded (256)—There is an order pair preassigned to the route, and assigning the orders in the order pair would exceed the maximum transit time for the order pair as specified by the MaxTransitTime field on the input order pairs.
  • Order pair violation (512)—An order belongs to an order pair and can't be assigned to the preassigned route.
  • Unreachable (1024)—A preassigned order is located on a street that cannot be reached by the route.
  • Cannot insert required break (2048)—A break for the route has a null sequence value in the presence of preassigned orders, and the break can't be inserted anywhere without introducing other violations.
  • MaxTravelTimeBetweenBreaks exceeded (8192)—The solver was unable to insert a break within the time specified by the MaxTravelTimeBetweenBreaks field on the input breaks. This is often caused by preassigning a sequence to a break such that it can't be reached within the maximum travel time.
  • Break MaxCumulWorkTime exceeded (16384)—The service was unable to insert a break within the time specified by the MaxCumulWorkTime field on input breaks. This is often caused by preassigning a sequence to a break such that it can't be reached within the maximum work time.
Dive-in:

The ViolatedConstraints value of an unrouted order may or may not describe all its violations. If the violation is severe enough to immediately exclude the order from further consideration, the analysis does so, which prevents any other violations from being discovered for that order. If a violation is encountered that doesn't automatically stop generation of a solution, the violation is noted in ViolatedConstraints, and the solver continues to consider the order. Any further violations like these are added to the ViolatedConstraints field until either (a) the service finds a violation that prematurely stops the solve process for that particular order, or (b) the service finds an overall solution to the problem.

Status

Indicates the status of the stop in the solution returned by the service. The attribute value is an integer that can be interpreted in the following ways:

  • 0—The stop was successfully evaluated.
  • 3—The street on which the stop is located is not traversable. This can occur if the street is restricted by a restriction specified by the restrictions parameter.
  • 4—The attribute values of the stop fall outside the coded value or range domains expected by the service. For example, a negative number may exist where positive numbers are required.
  • 5—The service can't arrive at the stop.
  • 6 (Time window violation)—Time windows on the stop cannot be reached on time; the route arrives early or late.
  • 7 (Not located on closest)—The closest network location to the stop is not traversable because of a restriction or barrier, so the stop has been located on the closest traversable network feature instead.

Syntax example for out_unassigned_stops

The out_unassigned_stops parameter is returned as a JSON feature set with following syntax.

Unlike the out_routes parameter, the out_unassigned_stops parameter does not contain spatialReference or geometryType properties because this parameter does not return any geometry information about the stops.

{
  "paramName": "out_unassigned_stops",
  "dataType": "GPRecordSet",
  "value": {
    "displayFieldName": "",
    "fields": [
      {
        "name": "<field1Name>",
        "type": "<field1Type>",
        "alias": "<field1Alias>",
        "length": "<field1Length>" //length is included only for esriFieldTypeString
      },
      {
        "name": "<field2Name>",
        "type": "<field2Type>",
        "alias": "<field2Alias>",
        "length": "<field2Length>"
      }
    ],
    "features": [
      {
        "attributes": {
          "<field1>": <value11>,
          "<field2>": <value12>
        }
      },
      {
        "attributes": {
          "<field1>": <value21>,
          "<field2>": <value22>
        }
      }
    ],
    "exceededTransferLimit": <true|false>
  }
}

Example for out_unassigned_stops

The following shows an example of the out_unassigned_stops parameter.

{
  "paramName": "out_unassigned_stops",
  "dataType": "GPRecordSet",
  "value": {
    "displayFieldName": "",
    "fields": [
      {
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "StopType",
        "type": "esriFieldTypeSmallInteger",
        "alias": "StopType"
      },
      {
        "name": "Name",
        "type": "esriFieldTypeString",
        "alias": "Name",
        "length": 128
      },
      {
        "name": "ViolatedConstraints",
        "type": "esriFieldTypeInteger",
        "alias": "ViolatedConstraints"
      },
      {
        "name": "Status",
        "type": "esriFieldTypeInteger",
        "alias": "Status"
      }
    ],
    "features": [
      {
        "attributes": {
          "ObjectID": 1,
          "StopType": 0,
          "Name": "Store_6",
          "ViolatedConstraints": 1,
          "Status": 5
        }
      },
      {
        "attributes": {
          "ObjectID": 2,
          "StopType": 0,
          "Name": "Store_8",
          "ViolatedConstraints": 1,
          "Status": 5
        }
      },
      {
        "attributes": {
          "ObjectID": 3,
          "StopType": 0,
          "Name": "Store_9",
          "ViolatedConstraints": 1,
          "Status": 5
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

solve_succeeded

Use this parameter to determine if the service was able to successfully find the solution for the input vehicle routing problem. The error messages for the failure can be obtained by making a request to get the status of the job.

The solve_succeeded parameter is returned as a JSON feature set with following syntax:

{
  "paramName": "solve_succeeded",
  "dataType": "GPBoolean",
  "value": <true | false>
}

The following shows an example of the solve_succeeded parameter:

{
  "paramName": "solve_succeeded",
  "dataType": "GPBoolean",
  "value": true
}

out_route_data

Use this parameter to access a .zip file that contains a file geodatabase containing the inputs and outputs of the analysis in a format that can be used to share route layers with ArcGIS Online or Portal for ArcGIS. The parameter value is populated only when the Save Route Data parameter is set to True.

out_result_file

Use this parameter to access the results from the analysis as a .zip file containing one or more files for each output. The format of the individual file is specified by the Output Format parameter. The parameter value is not populated when the Output Format parameter is set to Feature Set.

out_network_analysis_layer

Use this parameter to access the network analysis layer file that stores the analysis settings and the inputs and outputs used for the analysis. The parameter value is populated only when the Save Output Network Analysis Layer parameter is set to True.

Example usage

The vehicle routing problem service supports synchronous and asynchronous execution modes. Asynchronous and synchronous modes define how the application interacts with the service and gets the result. When using the synchronous execution mode, the application must wait for the request to finish and get the results. This execution mode is well suited for requests that complete quickly (under 10 seconds). When using the asynchronous execution mode, the client must periodically check if the service has finished execution and, once completed, get the result. While the service is executing, the application is free to do other things. This execution mode is well suited for requests that take a long time to complete.

Caution:

The maximum time an application can use the vehicle routing problem service when using the asynchronous execution mode is 1 hour (3,600 seconds). If your request does not complete within the time limit, it will time out and return a failure. When using the synchronous execution mode, the request must complete within 10 minutes (600 seconds). If your request takes longer, the web server handling the request will time out and return the appropriate HTTP error code in the response.

A request to the vehicle routing problem service has a URL that is specific to the execution mode. When using the synchronous execution mode, the request is in the following format:

https://<gpservice-url>/EditVehicleRoutingProblem/execute?parameters

When using the asynchronous execution mode, the request is in the following format:

https://<gpservice-url>/SolveVehicleRoutingProblem/submitJob?parameters

Service a set of orders with a fleet of vehicles

In this example, you will find the best routes for a fleet of three vehicles, operated by a distribution company, to deliver goods from a distribution center to a set of nine grocery stores. Each store has a specific quantity of demand for the goods, and each truck has a limited capacity for carrying the goods. The main objective is to assign trucks in the fleet a subset of the stores to service and to sequence the deliveries in a way that minimizes the overall transportation costs.

To solve this vehicle routing problem, specify the stores as orders, the distribution center as the depot, and the three trucks as routes. For orders and depots, the geometries are in the spatial reference of the network dataset, so the spatialReference property is not required.

For the orders parameter, the store name will be assigned to the Name attribute, the service time to the ServiceTime attribute, the total weight of good to be delivered to the DeliveryQuantities attribute, the time range in which the store accepts deliveries as the TimeWindowStart1 and TimeWindowEnd1 attributes, and 0 as the value for the MaxViolationTime1 attribute since the time windows should not be violated.

For the depots parameter, specify the depot name as the Name attribute and the depot operating time as the TimeWindowStart1 and TimeWindowEnd1 attributes.

For the routes parameter, the name for each truck will be assigned to the Name attribute, the depot name from where the trucks operation as the StartDepotName and EndDepotName attributes, and the time required to fully load the truck with goods as StartDepotServicetime. The same values as TimeWindowStart1 and TimeWindowsEnd1 for the depot parameter can be assigned to the EarliestStartTime and LatestStartTime attributes, since the trucks can start operation as soon as the depot opens. The maximum carrying capacity of each truck assigned to the Capacities attribute, the wage of the truck driver as the CostPerUnit attribute, and the average dollar amount spent per mile on fuel consumption, truck deprecation, and maintenance as the CostPerUnitDistance attribute. The maximum number of stores that can be serviced by a truck will be assigned to the MaxOrderCount attribute, the maximum duration of the work shift for the drivers according to the workday constraints applies to the MaxTotalTime attribute, and the maximum distance a truck can travel that balances both the daily fuel and maintenance costs among the fleet as the MaxTotalDistance attribute.

Since your time-based attribute values, such as ServiceTime, CostPerUnitDistance, and MaxTotalTime, are in minutes, you can use the default value (which is minutes) for the time_units parameter. Similarly, since your distance-based attributes values, such as CostPerUnitDistance and MaxTotalDistance, are in miles, you can use the default value (which is miles) for the distance_units parameter. It is difficult for these delivery trucks to make U-turns. Therefore, set the uturn_policy parameter as NO_UTURNS. You need to generate driving directions in English for each route, so set the populate_directions parameter to true and the directions_language parameter to en. Since you have time windows on orders and depots, you need to specify the default_date parameter. The default values for all the remaining parameters are valid for this problem, and therefore you will not pass those parameters in your request.

Submit job

Because you have three routes, you need to select the asynchronous execution mode. The first request is to submit a job that returns the job ID.

Request example

https://machine.domain.com/webadaptor/rest/services/World/VehicleRoutingProblem/GPServer/SolveVehicleRoutingProblem/submitJob?orders={"features":[{"geometry": {"x": -122.51,"y": 37.7724},"attributes": {"DeliveryQuantities": 1706,"Name": "Store_1","ServiceTime": 25,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.4889,"y": 37.7538},"attributes": {"DeliveryQuantities": 1533,"Name": "Store_2","ServiceTime": 23,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.4649,"y": 37.7747},"attributes": {"DeliveryQuantities": 1580,"Name": "Store_3","ServiceTime": 24,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.4739,"y": 37.7432},"attributes": {"DeliveryQuantities": 1289,"Name": "Store_4","ServiceTime": 20,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.4493,"y": 37.7315},"attributes": {"DeliveryQuantities": 1302,"Name": "Store_5","ServiceTime": 21,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.4917,"y": 37.6493},"attributes": {"DeliveryQuantities": 1775,"Name": "Store_6","ServiceTime": 26,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.4832,"y": 37.7012},"attributes": {"DeliveryQuantities": 1014,"Name": "Store_7","ServiceTime": 17,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.5301,"y": 37.8935},"attributes": {"DeliveryQuantities": 1761,"Name": "Store_8","ServiceTime": 26,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}},{"geometry": {"x": -122.2875,"y": 37.8909},"attributes": {"DeliveryQuantities": 1815,"Name": "Store_9","ServiceTime": 27,"TimeWindowStart1": 1355245200000,"TimeWindowEnd1": 1355274000000,"MaxViolationTime1": 0}}]}&depots={"features": [{"geometry": {"x": -122.3943,"y": 37.7967},"attributes": {"Name": "San Francisco","TimeWindowStart1": 1355241600000,"TimeWindowEnd1": 1355274000000}}]}&routes={"features": [{"attributes": {"Name": "Truck_1","StartDepotName": "San Francisco","EndDepotName": "San Francisco","StartDepotServiceTime": 60,"EarliestStartTime": 1355241600000,"LatestStartTime": 1355241600000,"Capacities": "15000","CostPerUnitTime": 0.2,"CostPerUnitDistance": 1.5,"MaxOrderCount": 2,"MaxTotalTime": 360,"MaxTotalTravelTime": 120,"MaxTotalDistance": 80}},{"attributes": {"Name": "Truck_2","StartDepotName": "San Francisco","EndDepotName": "San Francisco","StartDepotServiceTime": 60,"EarliestStartTime": 1355241600000,"LatestStartTime": 1355241600000,"Capacities": "15000","CostPerUnitTime": 0.2,"CostPerUnitDistance": 1.5,"MaxOrderCount": 2,"MaxTotalTime": 360,"MaxTotalTravelTime": 120,"MaxTotalDistance": 80}},{"attributes": {"Name": "Truck_3","StartDepotName": "San Francisco","EndDepotName": "San Francisco","StartDepotServiceTime": 60,"EarliestStartTime": 1355241600000,"LatestStartTime": 1355241600000,"Capacities": "15000","CostPerUnitTime": 0.2,"CostPerUnitDistance": 1.5,"MaxOrderCount": 2,"MaxTotalTime": 360,"MaxTotalTravelTime": 120,"MaxTotalDistance": 80}}]}&time_units=Minutes&distance_units=Miles&uturn_policy=NO_UTURNS&populate_directions=true&directions_language=en&default_date=1355212800000&f=json&token=<yourToken>

JSON Response

{
  "jobId": "jb1e9c0999ec047f4ac99750055041719",
  "jobStatus": "esriJobSubmitted"
}

Query job status

The job ID obtained from the response of the first request can be queried periodically to determine the status of the job.

Request example

https://<gpservice-url>/SolveVehicleRoutingProblem/jobs/<yourJobID>?returnMessages=true&f=json&token=<yourToken>

JSON Response

{
  "jobId": "jb1e9c0999ec047f4ac99750055041719",
  "jobStatus": "esriJobSucceeded",
  "results": {
    "out_unassigned_stops": {
      "paramUrl": "results/out_unassigned_stops"
    },
    "out_stops": {
      "paramUrl": "results/out_stops"
    },
    "out_routes": {
      "paramUrl": "results/out_routes"
    },
    "out_directions": {
      "paramUrl": "results/out_directions"
    },
    "solve_succeeded": {
      "paramUrl": "results/solve_succeeded"
    }
  },
  "inputs": {
    "orders": {
      "paramUrl": "inputs/orders"
    },
    "depots": {
      "paramUrl": "inputs/depots"
    },
    "routes": {
      "paramUrl": "inputs/routes"
    },
    "breaks": {
      "paramUrl": "inputs/breaks"
    },
    "time_units": {
      "paramUrl": "inputs/time_units"
    },
    "distance_units": {
      "paramUrl": "inputs/distance_units"
    },
    "analysis_region": {
      "paramUrl": "inputs/analysis_region"
    },
    "default_date": {
      "paramUrl": "inputs/default_date"
    },
    "uturn_policy": {
      "paramUrl": "inputs/uturn_policy"
    },
    "time_window_factor": {
      "paramUrl": "inputs/time_window_factor"
    },
    "spatially_cluster_routes": {
      "paramUrl": "inputs/spatially_cluster_routes"
    },
    "route_zones": {
      "paramUrl": "inputs/route_zones"
    },
    "route_renewals": {
      "paramUrl": "inputs/route_renewals"
    },
    "order_pairs": {
      "paramUrl": "inputs/order_pairs"
    },
    "excess_transit_factor": {
      "paramUrl": "inputs/excess_transit_factor"
    },
    "point_barriers": {
      "paramUrl": "inputs/point_barriers"
    },
    "line_barriers": {
      "paramUrl": "inputs/line_barriers"
    },
    "polygon_barriers": {
      "paramUrl": "inputs/polygon_barriers"
    },
    "use_hierarchy_in_analysis": {
      "paramUrl": "inputs/use_hierarchy_in_analysis"
    },
    "restrictions": {
      "paramUrl": "inputs/restrictions"
    },
    "attribute_parameter_values": {
      "paramUrl": "inputs/attribute_parameter_values"
    },
    "populate_route_lines": {
      "paramUrl": "inputs/populate_route_lines"
    },
    "route_line_simplification_tolerance": {
      "paramUrl": "inputs/route_line_simplification_tolerance"
    },
    "populate_directions": {
      "paramUrl": "inputs/populate_directions"
    },
    "directions_language": {
      "paramUrl": "inputs/directions_language"
    },
    "directions_style_name": {
      "paramUrl": "inputs/directions_style_name"
    }
  },
  "messages": []
}

Return output routes

Because the job succeeded, you can make a request to return the routes from the out_routes output parameter.

Request example

https://machine.domain.com/webadaptor/rest/services/World/VehicleRoutingProblem/GPServer/SolveVehicleRoutingProblem/jobs/<yourJobID>/results/out_routes?f=json&token=<yourToken>

JSON Response

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
  "paramName": "out_routes",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "displayFieldName": "",
    "geometryType": "esriGeometryPolyline",
    "spatialReference": {
      "wkid": 4326,
      "latestWkid": 4326
    },
    "fields": [
      {
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "Name",
        "type": "esriFieldTypeString",
        "alias": "Name",
        "length": 128
      },
      {
        "name": "ViolatedConstraints",
        "type": "esriFieldTypeInteger",
        "alias": "ViolatedConstraints"
      },
      {
        "name": "OrderCount",
        "type": "esriFieldTypeInteger",
        "alias": "OrderCount"
      },
      {
        "name": "TotalCost",
        "type": "esriFieldTypeDouble",
        "alias": "TotalCost"
      },
      {
        "name": "RegularTimeCost",
        "type": "esriFieldTypeDouble",
        "alias": "RegularTimeCost"
      },
      {
        "name": "OvertimeCost",
        "type": "esriFieldTypeDouble",
        "alias": "OvertimeCost"
      },
      {
        "name": "DistanceCost",
        "type": "esriFieldTypeDouble",
        "alias": "DistanceCost"
      },
      {
        "name": "TotalTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalTime"
      },
      {
        "name": "TotalOrderServiceTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalOrderServiceTime"
      },
      {
        "name": "TotalBreakServiceTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalBreakServiceTime"
      },
      {
        "name": "TotalTravelTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalTravelTime"
      },
      {
        "name": "TotalDistance",
        "type": "esriFieldTypeDouble",
        "alias": "TotalDistance"
      },
      {
        "name": "StartTime",
        "type": "esriFieldTypeDate",
        "alias": "StartTime",
        "length": 16
      },
      {
        "name": "EndTime",
        "type": "esriFieldTypeDate",
        "alias": "EndTime",
        "length": 16
      },
      {
        "name": "TotalWaitTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalWaitTime"
      },
      {
        "name": "TotalViolationTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalViolationTime"
      },
      {
        "name": "RenewalCount",
        "type": "esriFieldTypeInteger",
        "alias": "RenewalCount"
      },
      {
        "name": "TotalRenewalServiceTime",
        "type": "esriFieldTypeDouble",
        "alias": "TotalRenewalServiceTime"
      },
      {
        "name": "Shape_Length",
        "type": "esriFieldTypeDouble",
        "alias": "Shape_Length"
      }
    ],
    "features": [
      {
        "attributes": {
          "ObjectID": 1,
          "Name": "Truck_1",
          "ViolatedConstraints": null,
          "OrderCount": 1,
          "TotalCost": 39.22232551889244,
          "RegularTimeCost": 24.312590403482318,
          "OvertimeCost": 0,
          "DistanceCost": 14.90973511541012,
          "TotalTime": 121.56295201741159,
          "TotalOrderServiceTime": 24,
          "TotalBreakServiceTime": 0,
          "TotalTravelTime": 37.56295201741159,
          "TotalDistance": 9.939823410273414,
          "StartTime": 1355241600000,
          "EndTime": 1355248893777,
          "TotalWaitTime": 0,
          "TotalViolationTime": 0,
          "RenewalCount": 0,
          "TotalRenewalServiceTime": 0,
          "Shape_Length": 0.18586232678817152
        },
        "geometry": {
          "paths": [
            [
              [
                -122.39476499860575,
                37.79623499914595
              ],
              [
                -122.39486000028876,
                37.79632999992958
              ]
            ],  
            [
              [
                -122.46491587646648,
                37.77469887205535
              ],
              [
                -122.46495999990407,
                37.77531999961832
              ]  
            ]
          ]
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

Return output orders

Because the job succeeded, you can make a request to return the orders assigned to routes from the out_stops output parameter.

Request example

https://<gpservice-url>/SolveVehicleRoutingProblem/jobs/<yourJobID>/results/out_stops?f=json&token=<yourToken>

JSON Response

Note:

Because the response is quite verbose, the repeated elements within the response are abbreviated for clarity.

{
  "paramName": "out_stops",
  "dataType": "GPRecordSet",
  "value": {
    "displayFieldName": "",
    "fields": [
      {
        "name": "ObjectID",
        "type": "esriFieldTypeOID",
        "alias": "ObjectID"
      },
      {
        "name": "Name",
        "type": "esriFieldTypeString",
        "alias": "Name",
        "length": 128
      },
      {
        "name": "PickupQuantities",
        "type": "esriFieldTypeString",
        "alias": "PickupQuantities",
        "length": 128
      },
      {
        "name": "DeliveryQuantities",
        "type": "esriFieldTypeString",
        "alias": "DeliveryQuantities",
        "length": 128
      },
      {
        "name": "StopType",
        "type": "esriFieldTypeSmallInteger",
        "alias": "StopType"
      },
      {
        "name": "RouteName",
        "type": "esriFieldTypeString",
        "alias": "RouteName",
        "length": 128
      },
      {
        "name": "Sequence",
        "type": "esriFieldTypeInteger",
        "alias": "Sequence"
      },
      {
        "name": "FromPrevTravelTime",
        "type": "esriFieldTypeDouble",
        "alias": "FromPrevTravelTime"
      },
      {
        "name": "FromPrevDistance",
        "type": "esriFieldTypeDouble",
        "alias": "FromPrevDistance"
      },
      {
        "name": "ArriveCurbApproach",
        "type": "esriFieldTypeInteger",
        "alias": "ArriveCurbApproach"
      },
      {
        "name": "DepartCurbApproach",
        "type": "esriFieldTypeInteger",
        "alias": "DepartCurbApproach"
      },
      {
        "name": "ArriveTime",
        "type": "esriFieldTypeDate",
        "alias": "ArriveTime",
        "length": 16
      },
      {
        "name": "DepartTime",
        "type": "esriFieldTypeDate",
        "alias": "DepartTime",
        "length": 16
      },
      {
        "name": "WaitTime",
        "type": "esriFieldTypeDouble",
        "alias": "WaitTime"
      },
      {
        "name": "ViolationTime",
        "type": "esriFieldTypeDouble",
        "alias": "ViolationTime"
      },
      {
        "name": "ArriveTimeUTC",
        "type": "esriFieldTypeDate",
        "alias": "ArriveTimeUTC",
        "length": 16
      },
      {
        "name": "DepartTimeUTC",
        "type": "esriFieldTypeDate",
        "alias": "DepartTimeUTC",
        "length": 16
      }
    ],
    "features": [
      {
        "attributes": {
          "ObjectID": 1,
          "Name": "Store_1",
          "PickupQuantities": "",
          "DeliveryQuantities": "1706",
          "StopType": 0,
          "RouteName": "Truck_2",
          "Sequence": 2,
          "FromPrevTravelTime": 25.57343202829361,
          "FromPrevDistance": 7.5915227103313985,
          "ArriveCurbApproach": 0,
          "DepartCurbApproach": 0,
          "ArriveTime": 1355246734406,
          "DepartTime": 1355248234406,
          "WaitTime": 0,
          "ViolationTime": 0,
          "ArriveTimeUTC": 1355275534406,
          "DepartTimeUTC": 1355277034406
        }
      }
    ],
    "exceededTransferLimit": false
  }
}

JSON Response syntax

The execution mode chosen for the service determines the way in which you can retrieve the results from the service.

Outputs from synchronous execution

With the synchronous execution mode, the service returns a JSON response that contains any warning messages from the service execution as well as an array of results. Each result in this array contains the value for the output parameters returned by the service. If the request fails to execute, the response only contains the error property that contains the error messages. The examples in the subsequent section illustrate the response returned with specific request parameters.

JSON Response syntax for successful request

{
  "results": [
    {
      "paramName": "<paramName1>",
      "dataType": "<dataType1>",
      "value": <valueLiteralOrObject1>
    },
    {
      "paramName": "<paramName2>",
      "dataType": "<dataType2>",
      "value": <valueLiteralOrObject2>
    }
  ],
  "messages": [
    {
      "type": "<type1>",
      "description": "<description1>"
    },
    {
      "type": "<type2>",
      "description": "<description2>"
    }
  ]
}

JSON Response syntax for failed request

{
  "error": {
    "code": <code>,
    "message": "<message>",
    "details": [
      "<details>"
    ]
  }
}

Outputs from asynchronous execution

With the asynchronous execution mode, the service assigns a unique job ID for the transaction. The job ID and the status of the job are returned in the response.

JSON Response syntax from a request using asynchronous execution mode

{
  "jobId": <jobID>,
  "jobStatus": <jobStatus>
}

The jobStatus property can have the following values:

  • esriJobSubmitted
  • esriJobWaiting
  • esriJobExecuting
  • esriJobSucceeded
  • esriJobFailed
  • esriJobTimedOut
  • esriJobCancelling
  • esriJobCancelled

You can use the job ID to periodically check the status of the job and messages. Additionally, if the job has successfully completed, you can use the job ID to retrieve the results or even the inputs. The job information and results remain available for 24 hours after the job is done.

JSON Response syntax during job execution

{
  "jobId": "<jobId>",
  "jobStatus": "<jobStatus>",
  "messages": [
    {
      "type": "<type1>",
      "description": "<description1>"
    },
    {
      "type": "<type2>",
      "description": "<description2>"
    }
  ]
}

While a job is executing, you can cancel it by making a request of the following form:

https://machine.domain.com/webadaptor/rest/services/World/VehicleRoutingProblem/GPServer/SolveVehicleRoutingProblem/jobs/<yourJobID>/cancel?token=<yourToken>&f=json

After the successful completion of the job, you can make a request of the following form to retrieve the outputs. Refer to the Output Parameters section for more information on how to interpret the solution provided by the service.

https://machine.domain.com/webadaptor/rest/services/World/VehicleRoutingProblem/GPServer/SolveVehicleRoutingProblem/jobs/<yourJobID>/results/<output_parameter_name>?token=<yourToken>&f=json

The feature geometries are returned by default in the WGS84 spatial reference. You can get the feature geometries in any spatial reference by specifying the outSR parameter when retrieving an output parameter. The example below shows how to retrieve an output parameter with feature geometries in the Web Mercator (WKID: 102100) spatial reference.

https://machine.domain.com/webadaptor/rest/services/World/VehicleRoutingProblem/GPServer/SolveVehicleRoutingProblem/jobs/<yourJobID>/results/<output_parameter_name>?token=<yourToken>&f=json&outSR=102100

You can also retrieve the value for any input parameter by making requests of the following form:

https://machine.domain.com/webadaptor/rest/services/World/VehicleRoutingProblem/GPServer/SolveVehicleRoutingProblem/jobs/<yourJobID>/inputs/<inputParameterName>?token=<yourToken>&f=json

Usage limits

The table below lists the limits that apply to this service. Some limits vary by execution mode, and they are noted accordingly.

Limit valueLimit description

12.42 miles (20 kilometers)

Maximum snap tolerance:

(If the distance between an input point and its nearest traversable street is greater than the distance specified here, the point is excluded from the analysis.)

100,000 for synchronous execution

1,000,000 for asynchronous execution

Maximum number of directions features that can be returned:

600 seconds for synchronous execution

1 hour (3,600 seconds) for asynchronous execution

Maximum time a client can use the VRP services: