GeoAnalytics Tools in Run Python Script

The Run Python Script task allows you to programmatically execute most GeoAnalytics Tools with Python using an API that is available when you run the task. A geoanalytics object is instantiated automatically and gives you access to each tool using the syntax shown in the example and table below. Each tool accepts input layers as Spark DataFrames and will return results as a Spark DataFrame or collection of Spark DataFrames. To learn more, see Reading and writing layers in pyspark. DataFrames are held in memory and can be written to a data store at any time. This allows you to chain together multiple GeoAnalytics Tools without writing out intermediate results.

In the example below, the Detect Incidents task and Find Hot Spots task are used together and only the final DataFrame is written to a data store as a feature service layer. The input layer (represented in the example below by layers[0]) is a big data file share dataset of city bus locations recorded at 1-minute intervals for 15 days. To learn more about using layers, see Reading and writing layers in pyspark.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import time

# Run Detect Incidents to find all bus locations where delay status has changed from False to True
exp = "var dly = $track.field[\"dly\"].history(-2); return dly[0]==\"False\" && dly[1]==\"True\""
delay_incidents = geoanalytics.detect_incidents(
                                input_layer = layers[0],
                                track_fields = ["vid"],
                                start_condition_expression = exp,
                                output_mode = "Incidents")

# Use the resulting DataFrame as input to the Find Hot Spots task
delay_hotspots = geoanalytics.find_hot_spots(
                                point_layer = delay_incidents,
                                bin_size = 0.1,
                                bin_size_unit = "Miles",
                                neighborhood_distance = 1,
                                neighborhood_distance_unit = "Miles",
                                time_step_interval = 1,
                                time_step_interval_unit = "Days")

# Write the Find Hot Spots result to the spatiotemporal big data store
delay_hotspots.write.format("webgis").save("Bus_Delay_HS_{0}".format(time.time()))

For more examples, see Examples: Scripting custom analysis with the Run Python Script task.

The table below describes the method signature for GeoAnalytics Tools in Run Python Script. All tools can be called except for Copy To Data Store and Append Data. The parameter syntax is the same as that of the REST API except where noted. See the documentation for each tool for descriptions of parameter syntax and tool outputs.

ToolSyntaxReturnsNotes

Aggregate Points

1
2
3
4
5
6
7
8
9
10
11
12
13
aggregate_points(
  point_layer,
  bin_type = None,
  bin_size = None,
  bin_size_unit = None,
  polygon_layer = None,
  time_step_interval = None,
  time_step_interval_unit = None,
  time_step_repeat = None,
  time_step_repeat_unit = None,
  time_step_reference = None,
  summary_fields = None
)

DataFrame

Build Multi-Variable Grid

1
2
3
4
5
6
7
build_multi_variable_grid(
  bin_type = "Square",
  bin_size = None,
  bin_size_unit = None,
  input_layers = None,
  variable_calculations = None
)

DataFrame

input_layers should be list of DataFrames.

Calculate Density

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
calculate_density(
  input_layer,
  fields = None,
  weight = "Uniform",
  bin_type = "Square",
  bin_size = None,
  bin_size_unit = None,
  time_step_interval = None,
  time_step_interval_unit = None,
  time_step_repeat = None,
  time_step_repeat_unit = None,
  time_step_reference = None,
  radius = None,
  radius_unit = None,
  area_units = "SquareKilometers"
)

DataFrame

Calculate Field

1
2
3
4
5
6
7
8
9
10
11
calculate_field(
  input_layer,
  field_name,
  data_type,
  expression,
  track_aware = None,
  track_fields = None,
  time_boundary_split = None,
  time_boundary_split_unit = None,
  time_boundary_reference = None
)

DataFrame

Calculate Motion Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
calculate_motion_statistics(
  input_layer,
  track_fields,
  track_history_window = 3,
  motion_statistics = ["All"],
  idle_distance_tolerance = None,
  idle_distance_tolerance_unit = None,
  idle_time_tolerance = None,
  idle_time_tolerance_unit = None,
  time_boundary_split = None,
  time_boundary_split_unit = None,
  time_boundary_reference = None,
  distance_method = "Geodesic",
  distance_unit = "Meters",
  duration_unit = "Seconds",
  speed_unit = "MetersPerSecond",
  acceleration_unit = "MetersPerSecondSquared",
  elevation_unit = "Meters"
)

DataFrame

Clip Layer

1
2
3
4
clip_layer(
  input_layer,
  clip_layer
)

DataFrame

Create Buffers

1
2
3
4
5
6
7
8
9
10
11
create_buffers(
  input_layer,
  distance = None,
  distance_unit = None,
  field = None,
  method = "Planar",
  dissolve_option = None,
  dissolve_fields = None,
  summary_fields = None,
  multipart = False
)

DataFrame

Create Space Time Cube

1
2
3
4
5
6
7
8
9
10
11
create_space_time_cube(
  point_layer,
  bin_size,
  bin_size_unit,
  time_step_interval,
  time_step_interval_unit,
  time_step_alignment = None,
  time_step_reference = None,
  summary_fields = None,
  output_name = None
)

String

Returns the local path to the resulting space-time cube on a ArcGIS GeoAnalytics Server machine.

The cube is written to a temp directory and will be deleted if not copied to a different location.

Describe Dataset

1
2
3
4
5
describe_dataset(
  input_layer,
  sample_size = None,
  extent_output = False
)

Dictionary

Example result:

1
2
3
4
5
6
{
  "output":DataFrame,
  "outputJSON":string,
  "extentLayer":DataFrame,
  "sampleLayer":DataFrame
}

Detect Incidents

1
2
3
4
5
6
7
8
9
10
detect_incidents(
  input_layer,
  track_fields,
  start_condition_expression,
  end_condition_expression = None,
  output_mode = "AllFeatures",
  time_boundary_split = None,
  time_boundary_split_unit = None,
  time_boundary_reference = None
)

DataFrame

Dissolve Boundaries

1
2
3
4
5
6
dissolve_boundaries(
  input_layer,
  dissolve_fields = None,
  summary_fields = None,
  multipart = False
)

DataFrame

Enrich From Multi-Variable Grid

1
2
3
4
5
enrich_from_multi_variable_grid(
  input_features,
  grid_layer,
  enrich_attributes = None
)

DataFrame

Find Dwell Locations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
find_dwell_locations(
  input_layer,
  track_fields,
  distance_method = "Planar",
  distance_tolerance,
  distance_tolerance_unit,
  time_tolerance,
  time_tolerance_unit,
  summary_fields = None,
  output_type = "DwellMeanCenters",
  time_boundary_split = None,
  time_boundary_split_unit = None,
  time_boundary_reference = None
)

DataFrame

Find Hot Spots

1
2
3
4
5
6
7
8
9
10
11
find_hot_spots(
  point_layer,
  bin_size,
  bin_size_unit,
  neighborhood_distance,
  neighborhood_distance_unit,
  time_step_interval = None,
  time_step_interval_unit = None,
  time_step_alignment = None,
  time_step_reference = None
)

DataFrame

Find Point Clusters

1
2
3
4
5
6
7
8
9
10
find_point_clusters(
  input_layer,
  cluster_method = "DBSCAN",
  time_method = None,
  search_duration  = None,
  search_duration_unit = None,
  min_features_cluster = None,
  search_distance = None,
  search_distance_unit = None
)

DataFrame

Find Similar Locations

1
2
3
4
5
6
7
8
9
find_similar_locations(
  input_layer,
  search_layer,
  analysis_fields,
  most_or_least_similar = "MostSimilar",
  match_method = "AttributeValues",
  number_of_results = 10,
  append_fields = None
)

Dictionary

Example result:

1
{"output":DataFrame, "processInfo":string}

Forest-based Classification And Regression

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
forest_based_classification_and_regression(
  prediction_type = "Train",
  in_features = None,
  features_to_predict = None,
  variable_predict = None,
  explanatory_variables = None,
  number_of_trees = 100,
  minimum_leaf_size = None,
  maximum_tree_depth = None,
  sample_size = 100,
  random_variables = None,
  percentage_for_validation = 10,
  create_variable_importance_table = False,
  explanatory_variable_matching = None
)

Dictionary

Example result:

1
2
3
4
5
6
{
  "outputTrained":DataFrame,
  "variableOfImportance":DataFrame,
  "outputPredicted":DataFrame,
  "processInfo":string
}

Generalized Linear Regression

1
2
3
4
5
6
7
8
9
10
generalized_linear_regression(
  input_layer,
  features_to_predict = None,
  dependent_variable = None,
  explanatory_variables = None,
  regression_family = "Continuous",
  generate_coefficient_table = False,
  explanatory_variable_matching = None,
  dependent_mapping = None
)

Dictionary

Example result:

1
2
3
4
5
6
{
  "output":DataFrame,
  "coefficientTable":DataFrame,
  "outputPredicted":DataFrame,
  "processInfo":string
}

Geocode Locations

1
2
3
4
5
6
7
8
9
geocode_locations(
  input_layer,
  geocode_service_url,
  geocode_parameters,
  source_country = None,
  category = None,
  include_attributes = None,
  locator_parameters = None
)

DataFrame

Geographically Weighted Regression

1
2
3
4
5
6
7
8
9
10
11
12
geographically_weighted_regression(
  input_layer,
  explanatory_variables,
  dependent_variable,
  model_type = "Continuous",
  neighborhood_type = "NumberOfNeighbors",
  neighborhood_selection_method = "UserDefined",
  distance_band = None,
  distance_band_unit = None,
  number_of_neighbors = None,
  local_weighting_scheme = "Bisquare"
)

DataFrame

Group By Proximity

1
2
3
4
5
6
7
8
9
group_by_proximity(
  input_layer,
  spatial_relationship,
  spatial_near_distance = None,
  spatial_near_distance_unit = None,
  temporal_relationship = None,
  temporal_near_distance = None,
  temporal_near_distance_unit = None
)

DataFrame

Join Features

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
join_features(
  target_layer,
  join_layer,
  join_operation = "JoinOneToOne",
  keep_all_target_features = False,
  join_fields = None,
  summary_fields = None,
  spatial_relationship = None,
  spatial_near_distance = None,
  spatial_near_distance_unit = None,
  temporal_relationship = None,
  temporal_near_distance = None,
  temporal_near_distance_unit = None,
  attribute_relationship = None,
  join_condition = None
)

DataFrame

Merge Layers

1
2
3
4
5
merge_layers(
  input_layer,
  merge_layer,
  merging_attributes = None
)

DataFrame

Overlay Layers

1
2
3
4
5
6
overlay_layers(
  input_layer,
  overlay_layer,
  overlay_type = "Intersect",
  include_overlaps = True
)

DataFrame

Reconstruct Tracks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
reconstruct_tracks(
  input_layer,
  track_fields,
  method = "Planar",
  buffer_field = None,
  summary_fields = None,
  time_split = None,
  time_split_unit = None,
  distance_split = None,
  distance_split_unit = None,
  time_boundary_split = None,
  time_boundary_split_unit = None,
  time_boundary_reference = None
)

DataFrame

Summarize Attributes

1
2
3
4
5
6
7
8
9
10
summarize_attributes(
  input_layer,
  fields,
  summary_fields = None,
  time_step_interval = None,
  time_step_interval_unit = None,
  time_step_repeat = None,
  time_step_repeat_unit = None,
  time_step_reference = None
)

DataFrame

Summarize Center And Dispersion

1
2
3
4
5
6
7
summarize_center_and_dispersion(
  input_layer,
  summary_type,
  ellipse_size = None,
  weight_field = None,
  group_fields = None
)

Dictionary

Example result:

1
2
3
4
5
6
{
  "centralFeatureLayer":DataFrame,
  "meanCenterLayer":DataFrame,
  "medianCenterLayer":DataFrame,
  "ellipseLayer":DataFrame
}

Summarize Within

1
2
3
4
5
6
7
8
9
10
11
12
13
14
summarize_within(
  summary_polygons = None,
  bin_type = None,
  bin_size = None,
  bin_size_unit = None,
  summarized_layer = None,
  standard_summary_fields = None,
  weighted_summary_fields = None,
  sum_shape = True,
  shape_units = None,
  group_by_field = None,
  minority_majority = False,
  percent_shape = False
)

Dictionary

Example result:

1
2
3
4
{
  "output":DataFrame,
  "groupBySummary":DataFrame
}

Trace Proximity Events

1
2
3
4
5
6
7
8
9
10
11
12
13
14
trace_proximity_events(
  input_points,
  entity_id_field,
  entities_of_interest_ids,
  entities_of_interest_layer,
  distance_method,
  spatial_search_distance,
  spatial_search_distance_unit,
  temporal_search_distance,
  temporal_search_distance_unit,
  include_tracks_layer = false,
  max_trace_depth = 2147483647,
  attribute_match_criteria = None
)

Dictionary

Example result:

1
2
3
4
{
  "output":DataFrame,
  "tracksLayer":DataFrame
}

In addition to the tools listed above, a project tool is provided with the geoanalytics package that allows you to project the geometry of a DataFrame into the specified spatial reference.

ToolSyntaxReturnsNotes

Project

1
project(input_features, output_coord_system)

DataFrame

input_features is the DataFrame to project and output_coord_system is the WKT or WKID of the spatial reference to use.

Example:

1
geoanalytics.project(df, 2796)

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.

You can no longer sign into this site. Go to your ArcGIS portal or the ArcGIS Location Platform dashboard to perform management tasks.

Your ArcGIS portal

Create, manage, and access API keys and OAuth 2.0 developer credentials, hosted layers, and data services.

Your ArcGIS Location Platform dashboard

Manage billing, monitor service usage, and access additional resources.

Learn more about these changes in the What's new in Esri Developers June 2024 blog post.

Close