New
Samples
- Automate Road Surface Investigation Using Deep Learning
- Detecting and Categorizing Brick Kilns from Satellite Imagery
- Extracting Slums from Satellite Imagery
- Extracting Sinkholes from Aerial Imagery
- Detecting Settlements Using Supervised Classification and Deep Learning
- How much green is Delhi as on 15 Oct 2017?
- Maximizing Fire Protection Coverage
- Calculate Impervious Surfaces from Multispectral Imagery using Deep Learning
- Safe Streets to Schools
- Spatial and temporal distribution of service calls using big data tools
- Time Series Prediction of AirBnB Properties in New York City
Module Changes
arcgis.raster.functions.gbl
New functions
arcgis.env
- new parameter
type_init_tail_parameters(Seearcgis.learnbelow.)
arcgis.learn
- Adds support for multiple GPU machines to
learnmodule - Adds the
DeepLabV3model based ontorchvision - includes multispectral data support
- Enhancements to Multispectral data support:
- turn on
DRAwith thestatistics_typeparameter in variousshow_results()andshow_batch()functions - adds environment variable
type_init_tail_parametersto controlModel Tailinitialization forarcgis.learnfunctions - Sanctions
classify_objects()overFeatureClassifier.categorize_features()for feature categorization - Adds support for training models on either cpu or gpu devices
- Adds support for evaluating MaskRCNN model performance with correct metrics for the trained model to compare the results
- Adds
accuracy()function toUnetClassifier - Adds
unet_aux_lossparameter to thePSPNetClassifier - Adds support for training a subset of classes from
prepare_data()class_mappingparameter toMaskRCNN - Adds multispectral data support to:
FeatureClassifierSingleShotDetectorRetinaNetPSPNetClassifierMaskRCNN- Adds support for
resnet18andresnet34backbones toMaskRCNN - Adds support for
batchnormunfreezing in *PSPNetClassifier - Adds support for panchromatic data
- Adds validation to
class_mappingparameter forprepare_data()function
Fixes
Module Changes
arcgis.gis.admin
- Fixes formatting in
EnterpriseUsers.update()function
arcgis.mapping
- Fixes error when drawing
map widgetusing Microsoft Edge
arcgis.raster.functios.gbl
- General improvements to documentation
- Improves alphabetical ordering of API Reference
arcgis.learn
- Improves error messaging when calling
from_model()if proper libraries are not installed - Deprecates the
FeatureClassifier.categorize_features()method in favor ofclassify_objects() - Improves messaging when
input_video_pathparameter video does not exist forRetinaNet.predict_video()andSingleShotDetector.predict_video()functions - Fixes bug when re-running a previously saved
SingleShotDetectormodel - Fixes various model inferencing errors when using
Image Server - Fixes errors when using
detect_objects()when raster function configuration information is inaccessible - Fixes error when running
detect_objects()when using nomodel_arguments - Fixes
EntityRecognizer.extract_entities()returning a data frame with an empty column name - Improves messaging when incorrect path passed as
pathargument toprepare_data() - Fixes error when list of tensors is empty when running
SingleShotDetector.fit()model - Fixes model accuracy function in
UnetandPSPNetto return maximum accuracy if checkpoint isTrue - Improves tagging scheme documentation for
prepare_data()function - Improves visual accuracy when using Multispectral imagery with
UNetClassifier - Fixes missing
supported_backbonedocumentation for all models - Improves
predict()andfrom_model()documentation on theFeatureClassifier - Fixes [
show_batch()] errors on data objects whenclass_mappingparameter values fromprepare_data()are non-contiguous - Fixes errors with
show_results()andfit()methods ofEntityRecognizer - Fixes error when
prepare_data()dataset_typeargument value isBILUO - Fixes
extract_entities()error when readingUTF-16encoded files - Fixes to
load()function for input paths - Fixes error reading file names in
EntityRecognizer.load() - Fixes error causing
accuracy()to always return 1 with certainclass_mappingvalues when usingUnetClassifier - Fixes error where color map values were truncated using
MaskRCNN - Fixes error in
SingleShotDetector.save()method by adding optionaloverwriteparameter