New
Guides
Samples
Module Changes
arcgis.gis
User- Adds
generate_direct_access_url()method for upload of large files to datastores
- Adds
arcgis.raster
- Adds new submodule
arcgis.raster.utils- functions to interact with ArcGIS Online raster stores
ImageryLayer- Adds
process_as_multidimensionalparameter to following functions:
- Adds
arcgis.raster.analytics
- Adds new functions:
compute_change_rasteranalyze_changes_using_landtrendrzonal_statistics_as_table- Adds note to
tiles_onlyparameter documentation to clarify its use and avaiability to create dynamic imagery in all relevant methods
arcgis.geoanalytics
- Adds
ellapse_timeproperty toGPJobreturned when tools are run asynchronously
arcgis.learn
- New Table of Contents heading:
- New Table of Contents entry and models:
- Adds cell size ranges and output units to trained models (
Esri Model Definitions) - Adds
monitorparameter tofit()methods of models for use withearly_stoppingandcheckpoint Data Preparation Methods- Adds documentation to
pathparameter forprepare_data() - Adds keyword parameters and documentation to
prepare_data():min_pointsclasses_of_interestextra_featuresremap_classesbackground_classcode- Adds ability to use a folder or list of paths (multi-folder support) in
pathparameter forprepare_data()
- Adds
working_dirparameter to data prepartion methods which sets a default path as a prefix for saving trained models and checkpoints
- Adds documentation to
Unstructured Text Modelsarcgis.learn.textmoduleTextClassifier- adds support for
working_dirparameter
- adds support for
3D ModelsPointCNN- Adds keyword parameters when using output of
prepare_data()min_pointsclasses_of_interestextra_featuresremap_classesbackground_classcode
- Adds ability to remap classes
- Adds documentation to describe
precision,f1, andrecallmetrics forfit()method
- Adds keyword parameters when using output of
Feature, Tabular and Timeseries Models- Adds ability to publish non-spatial dataframes as
Tableitems with thepredict()methods MLModelTimeSeriesModel
- Adds ability to publish non-spatial dataframes as
Pixel Classification Models- Adds
ConnectNetModel - Adds
dice_loss_averagekeyword parameter to initialization options - Adds inference and exports support to:
- Adds threshholding functionality to:
MultiTaskRoadExtractor- Adds support for multispectral data
- Adds support for using multiple folders for training model
Image Translations ModelsModel Management- Adds
train_model()method
Fixes
Samples
Module Changes
arcgis.raster
ImageryLayer- Fixes table structure in documentation for:
- Fixes clipping input error when rendering tiles only Sentinel-2 imagery
arcgis.raster.analytics
- Improves warning documentation if
Raster Function Template (RFT)initialization fails - Fixes issue where
create_image_collection()created blank output ifinput_rastersreferred toSentinel-2orPleiadesdata
arcgis.raster.functions
- Fixes table structure in documentation for:
- Fixes incorrect
band_indexesparameter order innbrdocumentation
arcgis.network.analysis
- Fixes
Token Requirederrors when using tools withGISobject created usingapi_key:
arcgis.learn
- Fixes to various functions and model methods for
ArcGIS Pro Notebooksshow_batch()lr_find()model.show_results()
- Fixes
WARNING 003054: Input Raster does not support PIXEL_SPACE (raw image space). Running in MAP_SPACEwarning message when running the Classify Pixels Using Deep Learning tool inArcGIS Pro Data Preparation Methods- Fixes
expected scalar type FloatException withprepare_data()when usingpytorch 1.7.0
- Fixes
Pixel Classification Models- Improves
per_class_metrics()results on models initialized from unbalanced datasets - Fixes
fit()method in segmentation models returningNaNvalues for certain attributes:UNetClassifier,PSPNetClassifier,DeepLab MultiTaskRoadExtractor- Fixes issue for
show_results()plotting images incorrectly - Fixes issue causing
save()only to work after callingfit() - Fixes
load()so it only needs the model name - Fixes errors with
fit()when using monitor functionality - Fixes parameter table for
show_results()documentation
- Improves
Unstructured Text Modelsarcgis.learn.textmodule- Adds capability to use
HuggingFacepretrained models for: - Adds transformer backbone options for:
- Adds capability to use
Object Classification ModelsFeature Classifier- Fixes error when using an input object resulting from
prepare_data(dataset_type='ImageNet') - Fixes issues with
plot_confusion_matrix()- when using with an object created with
backend=tensorflow - illegible results when dataset has a large number of classes
- when run on object created from the
from_model()method and with adataargument
- when using with an object created with
- Fixes issue with
lr_find():- with object created with
mixup=True - with
MultiLabeled_Tilesdataset type object andmixup=True
- with object created with
- Fixes issue with using
predict()on a trained model
- Fixes error when using an input object resulting from
Feature, Tabular and Timeseries ModelsMLModel- Fixes inaccurate
predict()results because training transformations were not incorporating training statistics
- Fixes inaccurate
TimeSeriesModel- Fixes
AttributeError: '<object-name>' object has no attribute 'inverse_transform'when using thescore()method
- Fixes
3D ModelsPointCNN- Fixes bug with
predict_las()returning class codes from the model instead of the actual class codes in specific scenarios - Fixes error message raised with
from_model()if library dependencies are missing - Fixes
show_results()andshow_batch()when run against data object created with aremap_classesargument inprepare_data()
- Fixes bug with
Object Detection ModelsSingleShotDetector- Fixes out of memory error when using
show_results()on model with multispectral data - Fixes error when loading and executing on CPU device
- Fixes out of memory error when using
RetinaNet- Fixes issue where
FasterRCNNandMaskRCNNreturned no results with multispectral data- Fixes error when loading and executing on CPU device
Image Translation ModelsPix2Pix- Fixes
Key Errorwhen callingsave()on object created with mulitspectral data - Fixes issue with
save()not having an FID metric - Fixes issue with
compute_metrics()returning too many significant digits
- Fixes
CycleGANcompute_metrics()- Fixes issue with returning FID metrics without respective names
- Fixes issue with values returning with too many significant digits
SuperResolution- Fixes issue with
compute_metrics()returning PSNR and SSIM metrics without respective names - Fixes issue with
prepare_data()failing fordataset_type='superres'or when usingsuperresdata fordataargument
- Fixes issue with
ImageCaptioner- Fixes
AttributErrorabout missing temporary folder withlr_find()
- Fixes