A multipart geometry can be densified by adding interpolated points at regular intervals. Generalizing multipart geometry simplifies it while preserving its general shape. Densifying a multipart geometry adds more vertices at regular intervals.
Use case
The sample shows a polyline representing a ship's location at irregular intervals. The density of vertices along the ship's route is appropriate to represent the path of the ship at the sample map view's initial scale. However, that level of detail may be too great if you wanted to show a polyline of the ship's movement down the whole of the Willamette river. Then, you might consider generalizing the polyline to still faithfully represent the ship's passage on the river without having an overly complicated geometry.
Densifying a multipart geometry can be used to more accurately represent curved lines or to add more regularity to the vertices making up a multipart geometry.
How to use the sample
Tap the 'Geometry Settings' button to open the settings panel. Use the sliders to control the parameters of the densify and generalize methods. You can toggle the switches for either method to remove its effect from the resulting polyline.
How it works
- Use the static method
GeometryEngine.densify(polyline, maxSegmentLength)
to densify the polyline object. The resulting polyline object will have more points along the line, so that there are no points greater thanmaxSegmentLength
from the next point. - Use the static method
GeometryEngine.generalize(polyline, maxDeviation, true)
to generalize the polyline object. The resulting polyline object will have points shifted from the original line to simplify the shape. None of these points can deviate farther from the original line thanmaxDeviation
. The last parameter,removeDegenerateParts
, will clean up extraneous parts of a multipart geometry. This will have no effect in this sample as the polyline does not contain extraneous parts. - Note that
maxSegmentLength
andmaxDeviation
are in the units of the geometry's coordinate system. In this example, a cartesian coordinate system is used and at a small enough scale that geodesic distances are not required.
Relevant API
- ArcGISPoint
- GeometryEngine
- Multipoint
- MutablePointCollection
- Polyline
- SimpleLineSymbol
- SpatialReference
Tags
densify, generalize, simplify
Sample Code
//
// Copyright 2024 Esri
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
import 'dart:math';
import 'package:arcgis_maps/arcgis_maps.dart';
import 'package:flutter/material.dart';
import '../../utils/sample_state_support.dart';
class DensifyAndGeneralizeGeometry extends StatefulWidget {
const DensifyAndGeneralizeGeometry({super.key});
@override
State<DensifyAndGeneralizeGeometry> createState() =>
_DensifyAndGeneralizeGeometryState();
}
class _DensifyAndGeneralizeGeometryState
extends State<DensifyAndGeneralizeGeometry> with SampleStateSupport {
// Create a controller for the map view.
final _mapViewController = ArcGISMapView.createController();
// Declare a polyline geometry representing the ship's route.
late final Polyline _originalPolyline;
// Declare a graphic for displaying the points of the resultant geometry.
late final Graphic _resultPointsGraphic;
// Declare a graphic for displaying the lines of the resultant geometry.
late final Graphic _resultPolylineGraphic;
// A flag for when the map view is ready and controls can be used.
var _ready = false;
// A flag for when the settings bottom sheet is visible.
var _settingsVisible = false;
// A flag for whether to generalize the geometry.
var _generalize = false;
// The maximum deviation for the generalization.
var _maxDeviation = 10.0;
// A flag for whether to densify the geometry.
var _densify = false;
// The maximum segment length for the densification.
var _maxSegmentLength = 100.0;
@override
Widget build(BuildContext context) {
return Scaffold(
body: SafeArea(
top: false,
child: Stack(
children: [
Column(
children: [
Expanded(
// Add a map view to the widget tree and set a controller.
child: ArcGISMapView(
controllerProvider: () => _mapViewController,
onMapViewReady: onMapViewReady,
),
),
Row(
mainAxisAlignment: MainAxisAlignment.spaceEvenly,
children: [
// A button to show the Geometry Settings bottom sheet.
ElevatedButton(
onPressed: () => setState(() => _settingsVisible = true),
child: const Text('Geometry Settings'),
),
],
),
],
),
// Display a progress indicator and prevent interaction until state is ready.
Visibility(
visible: !_ready,
child: SizedBox.expand(
child: Container(
color: Colors.white30,
child: const Center(child: CircularProgressIndicator()),
),
),
),
],
),
),
// The Geometry Settings bottom sheet.
bottomSheet: _settingsVisible ? buildSettings(context) : null,
);
}
// The build method for the Geometry Settings bottom sheet.
Widget buildSettings(BuildContext context) {
return Container(
padding: EdgeInsets.fromLTRB(
20.0,
20.0,
20.0,
max(
20.0,
View.of(context).viewPadding.bottom /
View.of(context).devicePixelRatio,
),
),
child: Column(
mainAxisSize: MainAxisSize.min,
children: [
Row(
children: [
Text(
'Geometry Settings',
style: Theme.of(context).textTheme.titleLarge,
),
const Spacer(),
IconButton(
icon: const Icon(Icons.close),
onPressed: () => setState(() => _settingsVisible = false),
),
],
),
Row(
children: [
const Text('Generalize'),
const Spacer(),
Switch(
value: _generalize,
onChanged: (value) {
setState(() => _generalize = value);
updateGraphics();
},
),
],
),
Row(
children: [
const Text('Max Deviation'),
const Spacer(),
Text(
_maxDeviation.round().toString(),
textAlign: TextAlign.right,
),
],
),
Row(
children: [
Expanded(
child: Slider(
value: _maxDeviation,
min: 1.0,
max: 250.0,
onChanged: _generalize
? (value) {
setState(() => _maxDeviation = value);
updateGraphics();
}
: null,
),
),
],
),
const Divider(),
Row(
children: [
const Text('Densify'),
const Spacer(),
Switch(
value: _densify,
onChanged: (value) {
setState(() => _densify = value);
updateGraphics();
},
),
],
),
Row(
children: [
const Text('Max Segment Length'),
const Spacer(),
Text(
_maxSegmentLength.round().toString(),
textAlign: TextAlign.right,
),
],
),
Row(
children: [
Expanded(
child: Slider(
value: _maxSegmentLength,
min: 50.0,
max: 500.0,
onChanged: _densify
? (value) {
setState(() => _maxSegmentLength = value);
updateGraphics();
}
: null,
),
),
],
),
const Divider(),
ElevatedButton(
onPressed: reset,
child: const Text('Reset'),
),
],
),
);
}
void onMapViewReady() {
// Build the polyline that represents the ship's route.
// The spatial reference is NAD83 / Oregon North.
final polylineBuilder =
PolylineBuilder(spatialReference: SpatialReference(wkid: 32126))
..addPointXY(x: 2330611.130549, y: 202360.002957)
..addPointXY(x: 2330583.834672, y: 202525.984012)
..addPointXY(x: 2330574.164902, y: 202691.488009)
..addPointXY(x: 2330689.292623, y: 203170.045888)
..addPointXY(x: 2330696.773344, y: 203317.495798)
..addPointXY(x: 2330691.419723, y: 203380.917080)
..addPointXY(x: 2330435.065296, y: 203816.662457)
..addPointXY(x: 2330369.500800, y: 204329.861789)
..addPointXY(x: 2330400.929891, y: 204712.129673)
..addPointXY(x: 2330484.300447, y: 204927.797132)
..addPointXY(x: 2330514.469919, y: 205000.792463)
..addPointXY(x: 2330638.099138, y: 205271.601116)
..addPointXY(x: 2330725.315888, y: 205631.231308)
..addPointXY(x: 2330755.640702, y: 206433.354860)
..addPointXY(x: 2330680.644719, y: 206660.240923)
..addPointXY(x: 2330386.957926, y: 207340.947204)
..addPointXY(x: 2330485.861737, y: 207742.298501);
_originalPolyline = polylineBuilder.toGeometry() as Polyline;
// Create graphics for displaying the original points and lines.
final multipoint = multipointFromPolyline(_originalPolyline);
final originalPointGraphic = Graphic(
geometry: multipoint,
symbol: SimpleMarkerSymbol(
style: SimpleMarkerSymbolStyle.circle,
color: Colors.red,
size: 7.0,
),
);
final originalPolylineGraphic = Graphic(
geometry: _originalPolyline,
symbol: SimpleLineSymbol(
style: SimpleLineSymbolStyle.dot,
color: Colors.red,
width: 3.0,
),
);
// Create graphics for displaying the resultant points and lines.
_resultPointsGraphic = Graphic(
symbol: SimpleMarkerSymbol(
style: SimpleMarkerSymbolStyle.circle,
color: Colors.purple,
size: 7.0,
),
);
_resultPolylineGraphic = Graphic(
symbol: SimpleLineSymbol(
style: SimpleLineSymbolStyle.solid,
color: Colors.purple,
width: 3.0,
),
);
// Add the graphics to a graphics overlay, and add the overlay to the map view.
final graphicsOverlay = GraphicsOverlay()
..graphics.addAll(
[
originalPointGraphic,
originalPolylineGraphic,
_resultPointsGraphic,
_resultPolylineGraphic,
],
);
_mapViewController.graphicsOverlays.add(graphicsOverlay);
// Create a map with a basemap style and an initial viewpoint to show the extent of the polyline.
final map = ArcGISMap.withBasemapStyle(BasemapStyle.arcGISStreetsNight)
..initialViewpoint = Viewpoint.fromCenter(
_originalPolyline.extent.center,
scale: 65907,
);
_mapViewController.arcGISMap = map;
// Set the ready state variable to true to enable the sample UI.
setState(() => _ready = true);
}
// Updates the resultant lines and points based on the settings.
void updateGraphics() {
// Reset the resultant graphics if there are no operations to perform.
if (!_generalize && !_densify) {
_resultPointsGraphic.geometry = null;
_resultPolylineGraphic.geometry = null;
return;
}
// Start with the original polyline.
var resultPolyline = _originalPolyline;
// Generalize the polyline with the specified max deviation.
if (_generalize) {
resultPolyline = GeometryEngine.generalize(
geometry: resultPolyline,
maxDeviation: _maxDeviation,
removeDegenerateParts: true,
) as Polyline;
}
// Densify the points of the polyline with the specified max segment length.
if (_densify) {
resultPolyline = GeometryEngine.densify(
geometry: resultPolyline,
maxSegmentLength: _maxSegmentLength,
) as Polyline;
}
// Update the result graphics with the calculated geometries.
_resultPolylineGraphic.geometry = resultPolyline;
_resultPointsGraphic.geometry = multipointFromPolyline(resultPolyline);
}
// Resets the settings to their original values.
void reset() {
setState(() {
_generalize = false;
_maxDeviation = 10.0;
_densify = false;
_maxSegmentLength = 100.0;
});
updateGraphics();
}
// Creates a Multipoint geometry composed of all the points of a polyline.
Multipoint multipointFromPolyline(Polyline polyline) {
// Create a MutablePointCollection and add all the points of the polyline.
final mutablePointCollection =
MutablePointCollection(spatialReference: polyline.spatialReference);
for (final part in polyline.parts) {
for (final point in part.getPoints()) {
mutablePointCollection.addPoint(point);
}
}
// Use a MultipointBuilder to create a Multipoint geometry from the points.
final multipointBuilder = MultipointBuilder(
spatialReference: mutablePointCollection.spatialReference,
);
multipointBuilder.points = mutablePointCollection;
return multipointBuilder.toGeometry() as Multipoint;
}
}