ST_Aggr_Union

ST_Aggr_Union
Two aggregated groups of polygons (blue and orange) and the resulting unioned polygons.

ST_Aggr_Union operates on a grouped DataFrame and returns the union of geometries in each group. All geometries are required to have the same type. For example having point, linestring, and polygon geometry types in the same column is not supported. You can group your DataFrame using DataFrame.groupBy() or with a GROUP BY clause in a SQL statement.

To find the union of geometries in each record, use ST_Union.

FunctionSyntax
Pythonaggr_union(geometry)
SQLST_Aggr_Union(geometry)
ScalaaggrUnion(geometry)

For more details, go to the GeoAnalytics for Microsoft Fabric API reference for aggr_union.

Examples

PythonPythonSQLScala
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from geoanalytics_fabric.sql import functions as ST, Polygon

data = [
    (1, Polygon([[[5,5],[12,5],[12,10],[5,10],[5,5]]])),
    (1, Polygon([[[10,8],[14,8],[14,15],[10,15],[10,8]]])),
    (2, Polygon([[[6,8],[20,8],[20,20],[6,20],[6,8]]]))
]

df = spark.createDataFrame(data, ["id", "polygon"])

df.groupBy("id")\
  .agg(ST.aggr_union("polygon").alias("aggr_union"))\
  .show(truncate=False)
Result
Use dark colors for code blocksCopy
1
2
3
4
5
6
+---+-----------------------------------------------------------------------------+
|id |aggr_union                                                                   |
+---+-----------------------------------------------------------------------------+
|1  |{"rings":[[[5,5],[5,10],[10,10],[10,15],[14,15],[14,8],[12,8],[12,5],[5,5]]]}|
|2  |{"rings":[[[6,8],[20,8],[20,20],[6,20],[6,8]]]}                              |
+---+-----------------------------------------------------------------------------+

Version table

ReleaseNotes

1.0.0-beta

Python, SQL, and Scala functions introduced

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.