ST_GeodesicBuffer

ST_GeodesicBuffer takes a geometry column and a numeric distance value and returns a polygon column. The resulting buffer polygons represent the geodesic area that is less than or equal to the specified distance from each input geometry. The distance can be specified as a single value or a numeric column and should be specified in meters. The result will also be in meters. This function is more accurate but less performant than ST_Buffer and requires that a spatial reference is set on the input geometry column. To learn more about the difference between planar and geodesic calculations see Coordinate systems and transformations.

FunctionSyntax
Pythongeodesic_buffer(geometry, distance)
SQLST_GeodesicBuffer(geometry, distance)
PythongeodesicBuffer(geometry, distance)

For more details, go to the GeoAnalytics for Microsoft Fabric API reference for geodesic_buffer.

This function implements the OpenGIS Simple Features Implementation Specification for SQL 1.2.1.

Python and SQL examples

PythonPythonSQL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

from geoanalytics_fabric.sql import functions as ST

data = [
    ("POINT (-2533858.73 8107527.81)",),
    ("MULTIPOINT (-3159938.72 8190159.75, -3046133.91 8190159.75, -3188072.29 8103229.92)", ),
    ("LINESTRING (-3636954.77 7750916.26, -3168756.90 7966747.98, -3124795.45 7893415.62)", ),
    ("POLYGON ((-2299937.47 8474247.90, -2543511.83 8425946.52, -2488034.02 8322274.98, -2299937.47 8474247.90))", )
]

df = spark.createDataFrame(data, ["wkt"])\
          .select(ST.geom_from_text("wkt", srid=54008).alias("geometry"))

df = df.withColumn("geodesic_buffer", ST.geodesic_buffer("geometry", 60000))

ax = df.st.plot("geometry", facecolor="none", edgecolor="red")
ax.set_xticklabels(ax.get_xticklabels(),rotation=45)
df.st.plot("geodesic_buffer", ax=ax, facecolor="none", edgecolor="blue")
Plotting example for ST_GeodesicBuffer
Plotted result for ST_GeodesicBuffer.

Scala examples

Scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

import com.esri.geoanalytics.sql.{functions => ST}
import org.apache.spark.sql.{functions => F}

case class GeometryRow(wkt: String)
val data = Seq(GeometryRow("POINT (-2533858.73 8107527.81)"),
               GeometryRow("MULTIPOINT (-3159938.72 8190159.75, -3046133.91 8190159.75, -3188072.29 8103229.92)"),
               GeometryRow("LINESTRING (-3636954.77 7750916.26, -3168756.90 7966747.98, -3124795.45 7893415.62)"),
               GeometryRow("POLYGON ((-2299937.47 8474247.90, -2543511.83 8425946.52, -2488034.02 8322274.98, -2299937.47 8474247.90))"))

val df = spark.createDataFrame(data)
              .select(ST.geomFromText($"wkt", F.lit(54008)).alias("geometry"))
              .withColumn("geodesic_buffer", ST.geodesicBuffer($"geometry", 60000))
              .withColumn("buffer_area", F.round(ST.geodesicArea($"geodesic_buffer"),3))

df.select("geodesic_buffer", "buffer_area").show()
Result
1
2
3
4
5
6
7
8
+--------------------+------------------+
|     geodesic_buffer|       buffer_area|
+--------------------+------------------+
|{"rings":[[[-2455...|1.1288992603518E10|
|{"rings":[[[-2947...|3.1841572796083E10|
|{"rings":[[[-3641...|6.1757784805281E10|
|{"rings":[[[-2222...|5.9119409521289E10|
+--------------------+------------------+

Version table

ReleaseNotes

1.0.0-beta

Python, SQL, and Scala functions introduced

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.

You can no longer sign into this site. Go to your ArcGIS portal or the ArcGIS Location Platform dashboard to perform management tasks.

Your ArcGIS portal

Create, manage, and access API keys and OAuth 2.0 developer credentials, hosted layers, and data services.

Your ArcGIS Location Platform dashboard

Manage billing, monitor service usage, and access additional resources.

Learn more about these changes in the What's new in Esri Developers June 2024 blog post.

Close