ST_GeomFromEsriJSON takes a string column and returns a geometry column. The input string column must contain
the Esri JSON
representation of geometries. You can optionally specify a spatial reference ID for the result geometry column.
The sr
parameter value must be a valid SRID or WKT string.
Any spatial reference defined in the input Esri JSON strings will not be used.
This function should only be used when you don't know the geometry type represented by the input column or when the input column contains more than one geometry type. In other cases, use the function specific to the geometry type of your input data (i.e. ST_PointFromEsriJSON, ST_LineFromEsriJSON, ST_MPointFromEsriJSON, or ST_PolyFromEsriJSON).
Function | Syntax |
---|---|
Python | geom |
SQL | ST |
Scala | geom |
For more details, go to the GeoAnalytics for Microsoft Fabric API reference for geom_from_esri_json.
Examples
from geoanalytics_fabric.sql import functions as ST
point_esri_json = '{"x": -10840835.32, "y": 3763957.91}'
line_esri_json = '{"paths": [[[-7489594.84, 5178779.67],[-7474281.07,5176558.51],[-7465977.43,5179778.83]]]}'
df = spark.createDataFrame([(point_esri_json,),(line_esri_json,)],["esri_json"])
df.select(ST.geom_from_esri_json("esri_json", sr=8857).alias("geom_from_esri_json")).show(truncate=False)
+----------------------------------------------------------------------------------------+
|geom_from_esri_json |
+----------------------------------------------------------------------------------------+
|{"x":-1.084083532e7,"y":3763957.91} |
|{"paths":[[[-7489594.84,5178779.67],[-7474281.07,5176558.51],[-7465977.43,5179778.83]]]}|
+----------------------------------------------------------------------------------------+
Version table
Release | Notes |
---|---|
1.0.0-beta | Python, SQL, and Scala functions introduced |