Dissolve Boundaries Workflow

This covers the Spark SQL workflow that replicates the Dissolve Boundaries tool. Dissolve Boundaries merges geometries that intersect or have the same field value into a single geometry. This workflow will dissolve the USA States data by region, calculate the summary statistics for each dissolved region, and convert the dissolved multipart geometries into singlepart geometries.

Steps

Import

  1. In your notebook, import geoanalytics_fabric.

    PythonPythonScala
    1
    2
    3
    4
    
    import geoanalytics_fabric
    from geoanalytics_fabric.sql import functions as ST
    from pyspark_fabric.sql import functions as F

Read the sample data and plot

  1. Create a DataFrame from a feature service of the state boundaries in the United States and display columns of interest.

    PythonPythonScala
    1
    2
    3
    4
    5
    6
    7
    
    # Create a DataFrame from the USA States Boundaries feature service
    url = "https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/rest/services/USA_State_Boundaries/FeatureServer/0"
    df = spark.read.format("feature-service").load(url)
    
    # Display the first 5 rows of the DataFrame
    df.select('STATE_NAME', "SUB_REGION", "POP2010").show(5)
    Result
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    +----------+----------+--------+
    |STATE_NAME|SUB_REGION| POP2010|
    +----------+----------+--------+
    |    Alaska|   Pacific|  710231|
    |California|   Pacific|37253956|
    |    Hawaii|   Pacific| 1360301|
    |     Idaho|  Mountain| 1567582|
    |    Nevada|  Mountain| 2700551|
    +----------+----------+--------+
    only showing top 5 rows
  2. Plot the USA States data.

    Python
    1
    2
    3
    4
    5
    6
    7
    
    # Plot the USA States data
    df_plot = df.st.plot(figsize=(14, 14), basemap='light')
    
    df_plot.set_title("USA States")
    df_plot.set_xlabel("Longitude")
    df_plot.set_ylabel("Latitude")
    dissolve boundaries1

Dissolve States by region

  1. Use the ST_Aggr_Union Python function to dissolve the States by the SUB_REGION field to create multipart geometries.

    PythonPythonScala
    1
    2
    3
    4
    5
    
    # Dissolve by SUB_REGION and create multipart geometries
    df_dissolved_multipart = df.groupBy("SUB_REGION").agg(ST.aggr_union("shape").alias("dissolved_geom_multipart")) \
                                                            .withColumn("wkt", ST.as_text("dissolved_geom_multipart"))
    df_dissolved_multipart.show(10)
    Result
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    +------------------+------------------------+--------------------+
    |        SUB_REGION|dissolved_geom_multipart|                 wkt|
    +------------------+------------------------+--------------------+
    |           Pacific|    {"rings":[[[-1.78...|MULTIPOLYGON (((-...|
    |          Mountain|    {"rings":[[[-1.32...|POLYGON ((-1.3263...|
    |West South Central|    {"rings":[[[-1.17...|MULTIPOLYGON (((-...|
    |West North Central|    {"rings":[[[-1.05...|POLYGON ((-1.0583...|
    |East South Central|    {"rings":[[[-9469...|POLYGON ((-946995...|
    |       New England|    {"rings":[[[-8185...|MULTIPOLYGON (((-...|
    |    South Atlantic|    {"rings":[[[-8993...|MULTIPOLYGON (((-...|
    |East North Central|    {"rings":[[[-9804...|MULTIPOLYGON (((-...|
    |   Middle Atlantic|    {"rings":[[[-8403...|MULTIPOLYGON (((-...|
    +------------------+------------------------+--------------------+
  2. Plot the dissolved multipart geometries.

    Python
    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    # Plot the dissolved multipart geometries
    df_dissolved_multipart_plot = df_dissolved_multipart.st.plot(cmap_values="SUB_REGION", is_categorical=True, cmap="Paired",
                                                                 legend=True, legend_kwds={'title':"USA Region"},
                                                                 figsize=(14, 14), edgecolor="black", basemap="light")
    
    df_dissolved_multipart_plot.set_title("USA States dissolved multipart by region")
    df_dissolved_multipart_plot.set_xlabel("Longitude")
    df_dissolved_multipart_plot.set_ylabel("Latitude")
    dissolve boundaries2

Calculate summary statistics for the dissolved regions

A full list of summary statistics can be found in summary statistics.

  1. Calculate the total population for each region.

    PythonPythonScala
    1
    2
    3
    
    # Get the sum of the population for each "SUB_REGION"
    df.groupBy("SUB_REGION").sum().select("SUB_REGION", "sum(POP2010)").show(10)
    Result
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    +------------------+------------+
    |        SUB_REGION|sum(POP2010)|
    +------------------+------------+
    |           Pacific|    49880102|
    |West South Central|    36346202|
    |   Middle Atlantic|    40872375|
    |    South Atlantic|    59777037|
    |East North Central|    46421564|
    |       New England|    14444865|
    |          Mountain|    22065451|
    |East South Central|    18432505|
    |West North Central|    20505437|
    +------------------+------------+
  2. Calculate the number of States within each region.

    PythonPythonScala
    1
    2
    3
    
    # Get the count of States within each "SUB_REGION"
    df.groupBy("SUB_REGION").count().select("SUB_REGION", "count").show(10)
    Result
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    +------------------+-----+
    |        SUB_REGION|count|
    +------------------+-----+
    |West South Central|    4|
    |West North Central|    7|
    |    South Atlantic|    9|
    |           Pacific|    5|
    |       New England|    6|
    |          Mountain|    8|
    |   Middle Atlantic|    3|
    |East South Central|    4|
    |East North Central|    5|
    +------------------+-----+

Create dissolved singlepart geometries

  1. Convert the dissolved multipart geometries into dissolved singlepart geometries using the ST_Geometries function and the Spark Explode function.

    PythonPythonScala
    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    # Create dissolved singlepart geometries from the dissolved multipart geometries
    df_dissolved_singlepart = df_dissolved_multipart.select("SUB_REGION",
        F.explode(ST.geometries("dissolved_geom_multipart")) \
        .alias("dissolved_geom_singlepart")) \
        .withColumn("wkt", ST.as_text("dissolved_geom_singlepart")) \
        .withColumn("index", F.monotonically_increasing_id())
    
    df_dissolved_singlepart.orderBy("SUB_REGION", desc=False).show(20)
    Result
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    +------------------+----------------------------+--------------------+-----+
    |        SUB_REGION|dissolved_geom_non_multipart|                 wkt|index|
    +------------------+----------------------------+--------------------+-----+
    |East North Central|        {"rings":[[[-9851...|POLYGON ((-985149...|   79|
    |East North Central|        {"rings":[[[-9804...|POLYGON ((-980408...|   77|
    |East North Central|        {"rings":[[[-9851...|POLYGON ((-985185...|   80|
    |East North Central|        {"rings":[[[-9688...|POLYGON ((-968863...|   78|
    |East North Central|        {"rings":[[[-9334...|POLYGON ((-933466...|   81|
    |East South Central|        {"rings":[[[-9469...|POLYGON ((-946995...|   57|
    |   Middle Atlantic|        {"rings":[[[-8403...|POLYGON ((-840342...|   82|
    |   Middle Atlantic|        {"rings":[[[-8264...|POLYGON ((-826401...|   85|
    |   Middle Atlantic|        {"rings":[[[-8158...|POLYGON ((-815894...|   84|
    |   Middle Atlantic|        {"rings":[[[-8210...|POLYGON ((-821005...|   83|
    |          Mountain|        {"rings":[[[-1.32...|POLYGON ((-1.3263...|   46|
    |       New England|        {"rings":[[[-7933...|POLYGON ((-793364...|   59|
    |       New England|        {"rings":[[[-7859...|POLYGON ((-785963...|   60|
    |       New England|        {"rings":[[[-8185...|POLYGON ((-818536...|   58|
    |       New England|        {"rings":[[[-7795...|POLYGON ((-779589...|   61|
    |       New England|        {"rings":[[[-7612...|POLYGON ((-761290...|   62|
    |           Pacific|        {"rings":[[[-1.78...|POLYGON ((-1.7819...|    0|
    |           Pacific|        {"rings":[[[-1.77...|POLYGON ((-1.7737...|    1|
    |           Pacific|        {"rings":[[[-1.75...|POLYGON ((-1.7552...|    2|
    |           Pacific|        {"rings":[[[-1.74...|POLYGON ((-1.7445...|    3|
    +------------------+----------------------------+--------------------+-----+
    only showing top 20 rows
  2. Plot the dissolved singlepart geometries.

    Python
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    
    # Plot the dissolved singlepart geometries
    df_dissolved_singlepart_plot = df_dissolved_singlepart.st.plot(cmap_values="index",
                                                                         is_categorical=True,
                                                                         cmap="prism",
                                                                         figsize=(14, 14),
                                                                         edgecolor="black",
                                                                         basemap="light")
    
    df_dissolved_singlepart_plot.set_title("USA States dissolved singlepart by region")
    df_dissolved_singlepart_plot.set_xlabel("Longitude")
    df_dissolved_singlepart_plot.set_ylabel("Latitude")
    dissolve boundaries3

What's next?

See below for some related topics:

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.

You can no longer sign into this site. Go to your ArcGIS portal or the ArcGIS Location Platform dashboard to perform management tasks.

Your ArcGIS portal

Create, manage, and access API keys and OAuth 2.0 developer credentials, hosted layers, and data services.

Your ArcGIS Location Platform dashboard

Manage billing, monitor service usage, and access additional resources.

Learn more about these changes in the What's new in Esri Developers June 2024 blog post.

Close