Clustering - query clusters

This sample demonstrates how to query features represented by aggregate point clusters. Clustering is a method of reducing points in a FeatureLayer, CSVLayer, GeoJSONLayer, WFSLayer, or OGCFeatureLayer by grouping them based on their spatial proximity to one another. Typically, clusters are proportionally sized based on the number of features within each cluster. See the Intro to clustering sample if you are unfamiliar with clustering.

Querying clustered features allows you to do the following:

  1. Query and display statistics describing the clustered features in the popup.
  2. Query the extent of the features and display it in the view.
  3. Query all features and calculate the convex hull.

To query a cluster's features, you must provide the ObjectID of the graphic representing the cluster to the Query.aggregateIds property and pass the parameters to the desired query method on the clustered layer's layer view.

Query cluster features
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
          const query = layerView.createQuery();
          query.aggregateIds = [graphic.getObjectId()];
          const { features } = await layerView.queryFeatures(query);

Query cluster statistics

To query statistics for the features included in a cluster, reference the ObjectID of the cluster graphic in Query.aggregateIds, then specify the query outStatistics. Since the clustered layer has a UniqueValueRenderer, we'll use groupByFieldsForStatistics to group the statistics by the field used to categorize the features in the renderer.

cluster statistics
Calculate cluster statistics
Use dark colors for code blocksCopy
265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292 292
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
          const query = layerView.createQuery();

          query.aggregateIds = [graphic.getObjectId()];

          query.groupByFieldsForStatistics = ["fuel1"];
          query.outFields = ["capacity_mw", "fuel1"];
          query.orderByFields = ["num_features desc"];
          query.outStatistics = [
            {
              onStatisticField: "capacity_mw",
              outStatisticFieldName: "capacity_total",
              statisticType: "sum"
            },
            {
              onStatisticField: "1",
              outStatisticFieldName: "num_features",
              statisticType: "count"
            },
            {
              onStatisticField: "capacity_mw",
              outStatisticFieldName: "capacity_max",
              statisticType: "max"
            }
          ];

          const { features } = await layerView.queryFeatures(query);
          const stats = features.map((feature) => feature.attributes);

Query cluster extent

You may want to display the extent of clustered features to the user. To do this, reference the cluster graphic's ObjectID in Query.aggregateIds, and call the queryExtent method on the layer view.

cluster query extent
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
async function displayClusterExtent(graphic){
  const query = layerView.createQuery();
  query.aggregateIds = [ graphic.getObjectId() ];

  const { extent } = await layerView.queryExtent(query);
  const extentGraphic = {
    geometry: extent,
    symbol: {
      type: "simple-fill",
      outline: {
        width: 1.5,
        color: [ 75, 75, 75, 1 ]
      },
      style: "none",
      color: [ 0, 0, 0, 0.1 ]
    }
  };
  view.graphics.add(extentGraphic);
}

The cluster popup already displays the cluster extent by default when the browse features action is clicked.

Display cluster convex hull

Perhaps it's better to show the convex hull of the clustered features rather than the extent since it more accurately represents the distribution of the points. The geometryEngine allows you to do that. Query for all the features in the cluster, get their geometries, then pass them to the convexHull method of geometryEngine.

cluster convex hull
Display cluster convex hull
Use dark colors for code blocksCopy
234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        async function displayConvexHull(graphic) {
          processParams(graphic, layerView);

          const query = layerView.createQuery();
          query.aggregateIds = [graphic.getObjectId()];
          const { features } = await layerView.queryFeatures(query);
          const geometries = features.map((feature) => feature.geometry);
          const [convexHull] = geometryEngine.convexHull(geometries, true);

          convexHullGraphic = new Graphic({
            geometry: convexHull,
            symbol: {
              type: "simple-fill",
              outline: {
                width: 1.5,
                color: [75, 75, 75, 1]
              },
              style: "none",
              color: [0, 0, 0, 0.1]
            }
          });
          view.graphics.add(convexHullGraphic);
        }
Image preview of related sample Intro to clustering

Intro to clustering

Intro to clustering

Image preview of related sample Clustering - generate suggested configuration

Clustering - generate suggested configuration

Clustering - generate suggested configuration

Image preview of related sample Clustering - filter popup features

Clustering - filter popup features

This sample demonstrates how to filter clustered features within a cluster's popup.

Image preview of related sample Clustering - advanced configuration

Clustering - advanced configuration

Clustering - advanced configuration

Image preview of related sample Popup charts for point clusters

Popup charts for point clusters

This sample demonstrates how to summarize clustered features using charts within a cluster's popup.

Image preview of related sample Point clustering with visual variables

Point clustering with visual variables

Point clustering with visual variables

FeatureReductionCluster

Read the Core API Reference for more information.

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.