Cluster size based on the sum of a field

This sample demonstrates how to dynamically vary the size of point clusters based on the sum of a numeric attribute, rather than the average (the default behavior).

This is done by creating an AggregateField using the sum statistic type and referencing that field in a SizeVariable of a renderer. This renderer must be set on the FeatureReductionCluster.renderer property.

Resize clusters by sum
Use dark colors for code blocksCopy
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        const clusterConfig = {
          type: "cluster",

          fields: [{
            name: "population_total",
            alias: "Total population",
            onStatisticField: "POP",
            statisticType: "sum"
          }],
          renderer: {
            type: "simple",
            symbol: {
              type: "simple-marker",
              style: "circle",
              color: symbolColor,
              size: 24,
              outline: {
                color: outlineColor,
                width: 1
              }
            },
            visualVariables: [
              {
                type: "size",
                field: "population_total",
                stops: [
                  { value: 0, size: 8 },
                  { value: 100, size: 12 },
                  { value: 10000, size: 18 },
                  { value: 50000000, size: 48 }
                ]
              }
            ]
          },

          clusterRadius: "120px",
          // {cluster_count} is an aggregate field containing
          // the number of features comprised by the cluster
          popupTemplate: {
            title: "Cluster summary",
            content: "This cluster represents {cluster_count} cities with a total population of <b>{population_total}</b>.",
            fieldInfos: [
              {
                fieldName: "cluster_count",
                format: {
                  places: 0,
                  digitSeparator: true
                }
              },
              {
                fieldName: "population_total",
                format: {
                  places: 0,
                  digitSeparator: true
                }
              }
            ]
          },
          labelingInfo: [
            {
              deconflictionStrategy: "none",
              labelExpressionInfo: {
                expression: `
                var value = $feature.population_total;
                var num = Count(Text(Round(value)));

                if(value == 0){
                  return "";
                }
                Decode(num,
                  4, Text(value / Pow(10, 3), "##.0k"),
                  5, Text(value / Pow(10, 3), "##k"),
                  6, Text(value / Pow(10, 3), "##k"),
                  7, Text(value / Pow(10, 6), "##m"),
                  8, Text(value / Pow(10, 6), "##m"),
                  9, Text(value / Pow(10, 6), "##m"),
                  10, Text(value / Pow(10, 6), "##m"),
                  Text(value, "#,###")
                )
                `
              },
              symbol: {
                type: "text",
                color: "white",
                font: {
                  weight: "bold",
                  family: "Noto Sans",
                  size: "12px"
                },
                haloColor: symbolColor,
                haloSize: 1
              },
              labelPlacement: "center-center"
            }
          ]
        };
Image preview of related sample Intro to clustering

Intro to clustering

Intro to clustering

Image preview of related sample Override cluster symbol

Override cluster symbol

Override cluster symbol

Image preview of related sample Clustering - filter popup features

Clustering - filter popup features

This sample demonstrates how to filter clustered features within a cluster's popup.

Image preview of related sample Clustering - generate suggested configuration

Clustering - generate suggested configuration

Clustering - generate suggested configuration

Image preview of related sample Clustering - query clusters

Clustering - query clusters

Clustering - query clusters

Image preview of related sample Popup charts for point clusters

Popup charts for point clusters

This sample demonstrates how to summarize clustered features using charts within a cluster's popup.

Image preview of related sample Point clustering with visual variables

Point clustering with visual variables

Point clustering with visual variables

FeatureReductionCluster

Read the Core API Reference for more information.

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.