TRK_SplitByTimeGap

TRK_SplitByTimeGap takes a track column and a duration and returns an array of tracks. The result array is created by splitting the input track wherever two vertices are farther apart than the specified gap duration. The track is split by removing the segment between the two vertices.

The duration can be defined using ST_CreateDuration or with a tuple containing a number and a unit string (e.g., (5, "minutes")).

Tracks are linestrings that represent the change in an entity's location over time. Each vertex in the linestring has a timestamp (stored as the M-value) and the vertices are ordered sequentially.

For more information on using tracks in GeoAnalytics Engine, see the core concept topic on tracks.

FunctionSyntax
Pythonsplit_by_time_gap(track, gap_duration)
SQLTRK_SplitByTimeGap(track, gap_duration)
ScalasplitByTimeGap(track, gapDuration)

For more details, go to the GeoAnalytics Engine API reference for split_by_time_gap.

Python and SQL Examples

PythonPythonSQL
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from geoanalytics.sql import functions as ST
from geoanalytics.tracks import functions as TRK
from pyspark.sql import functions as F

data = [
    ("LINESTRING M (-117.27 34.05 1633455010, -117.22 33.91 1633456062," +\
     " -116.96 33.64 1633457132, -116.85 33.81 1633457224)",),
    ("LINESTRING M (-116.89 33.96 1633575895, -116.71 34.01 1633576982, -116.66 34.08 1633577061)",),
    ("LINESTRING M (-116.24 33.88 1633575234, -116.33 34.02 1633576336)",)
]

df = spark.createDataFrame(data, ["wkt"]).withColumn("track", ST.line_from_text("wkt", srid=4326))

result = df.withColumn("split_by_time_gap", TRK.split_by_time_gap("track", (700, "seconds")))

ax = result.st.plot("track", edgecolor="lightgrey", linewidths=10, figsize=(15, 8))
result.select(F.explode("split_by_time_gap")).st.plot(ax=ax, edgecolor="greenyellow", linewidths=3)
ax.legend(['Input track','Result track'], loc='lower right', fontsize='x-large')
Plotted example for TRK_SplitByTimeGap
Plotted result for TRK_SplitByTimeGap.

Scala Example

Scala
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import com.esri.geoanalytics.sql.{functions => ST}
import com.esri.geoanalytics.sql.{trackFunctions => TRK}
import org.apache.spark.sql.{functions => F}

case class lineRow(lineWkt: String)

val data = Seq(lineRow("LINESTRING M (-117.27 34.05 1633455010, -117.22 33.91 1633456062, -116.96 33.64 1633457132)"),
               lineRow("LINESTRING M (-116.89 33.96 1633575895, -116.71 34.01 1633576982, -116.66 34.08 1633577061)"),
               lineRow("LINESTRING M (-116.24 33.88 1633575234, -116.33 34.02 1633576336)"))

val df = spark.createDataFrame(data)
              .withColumn("track", ST.lineFromText($"lineWkt", F.lit(4326)))
              .withColumn("split_by_time_gap", TRK.splitByTimeGap($"track",  F.lit(struct(F.lit(700), F.lit("seconds")))))
              .select(F.explode($"split_by_time_gap").alias("result_tracks"))

df.select("result_tracks").show(5, truncate = false)
Result
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
+-------------------------------------------------------------------------------------+
|result_tracks                                                                        |
+-------------------------------------------------------------------------------------+
|{"hasM":true,"paths":[[[-117.27,34.05,1.63345501e9]]]}                               |
|{"hasM":true,"paths":[[[-117.22,33.91,1.633456062e9]]]}                              |
|{"hasM":true,"paths":[[[-116.96,33.64,1.633457132e9]]]}                              |
|{"hasM":true,"paths":[[[-116.89,33.96,1.633575895e9]]]}                              |
|{"hasM":true,"paths":[[[-116.71,34.01,1.633576982e9],[-116.66,34.08,1.633577061e9]]]}|
+-------------------------------------------------------------------------------------+
only showing top 5 rows

Version table

ReleaseNotes

1.4.0

Python and SQL functions introduced

1.5.0

Scala function introduced

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.